
Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/jbaer.html

Maze Generation Using Disjoint
Bhawana Singh

1,2M.Tech.

4M.Tech

Abstract: An important application of the
representation of sets, where “n” distinct elements
be grouped into number of disjoint sets. This paper
application of disjoint-set data structures for
maze. It also shows that the maze can be represented
new improved algorithm has also been defined
the maze using disjoint-set data structure with the

1. INTRODUCTION

A relation is defined on a set S if for every pair
b), a,b € S, a R b is either true or false. If a R b
that a is related to b. An Equivalence Relation
that satisfies three properties:

• Reflexive: a R a is true for all a € S.

• Symmetric: a R b if and only if b R a.

• Transitive: a R b and b R c implies that a R

Maze is also example of equivalence relation.
two-dimensional area of any size, usually rectangular
(as shown in figure 1). It consists of cells.
elementary maze item which is interpreted
The maze contains different types of obstacles
single or multiple paths from source to destination.
reflexive as a cell is connected to itself and
and transitive. For any equivalence relation,
natural problem is to decide for any a and b whether

Fig. 1. Representation of Maze

Journal of Basic and Applied Engineering Research
Online ISSN: 2350-0255; Volume 1, Number 6; October, 2014 pp. 19

Maze Generation Using Disjoint-Sets with Stack
Singh1, Swasti Saxena2, Anil Pandey3, Pooja Khulbe4

M.Tech. CSE Department, Bareilly, India
3CSE Department, Bareilly, India

M.TechCSE Department, Dehradun, India

the tree is the

elements are needed to
paper defines the

for generating the
represented as a tree. A

defined for constructing
the stack.

pair of elements (a,
b is true it is said

Relation is a relation R

R c.

relation. It is grid-like
rectangular in shape
cells. A cell is an

 as a single-site.
obstacles and may have

destination. It is
 both symmetric

relation, denoted ~, the
whether a ~ b.

Disjoint-Sets data structure is used
relation problems. The disjoint-sets
Disjoint sets are sets such that S
equivalence relations are reflections
partition P determines an equivalence
defining x R y iff x and y belong
Similarly, if R is an equivalence relation
equivalence classes of R is a partition:

R[x] = {y ∈ U: x R y}
P = {R[x]: x ∈ U}

2. DISJOINT-SET DATA STRUCTURE

2.1 Description of traditional Disjoint

The data structure and algorithm
Disjoint-Sets, Union-Find and Par
structure maintains a collection S=
dynamic sets. Each set is identified
is some member of the set. If there
not equal to y, such that Sx= (3, 4,
these sets are called disjoint sets as
is common in both sets. In other words,
data structure for problems requiring
that is, are two elements in the
requires two major operations:

• Union (x, y) : Modifies the partition
of the set containing x and the

• Find (x, y) : Returns true iff x
set in the partition.

A simple and clever way to implement
using a tree model. Assume that
segment of non-negative integers U
be a vector of integer elements with
parent of the element x, and denote
parents) with value -1. The set of elements
a set in the partition of U. Thus
defining a forest, a collection of trees,
represent the sets in the partition. The
the partition of singleton sets P =

19-21

Sets with Stack

used to solve equivalence
sets are also called Partitions.

Si ∩ Sj =φ. Partitions and
reflections of one another. A

equivalence relation R on U by
belong to the same set in P.

relation on U, then the set of
partition:

STRUCTURE

Disjoint-set algorithm

 is known by three names:
Partition. A disjoint-set data

S= {S1, S2, Sk} of disjoint
identified by a representative, which

there are two sets Sx and Sy, x is
 5, 6, 7) and Sy= (1, 2) then

as there is no element which
words, Disjoint-sets are the

requiring equivalence relations,
 same equivalence class. It

partition by forming the union
 set containing y.

x and y belong to the same

implement these algorithms is
that the universe is an initial

U = {0, 1, . . . , n−1}. Let v
with size n. Let v[x] hold the

denote roots (element without
elements in a tree represents
 v contains the information
trees, and trees in the forest
The structure is initialized to
= {{0}, {1}, . . . {n − 1}},

20 Bhawana Singh, Swasti Saxena, Anil Pandey, Pooja Khulbe

Journal of Basic and Applied Engineering Research (JBAER)
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 6; October, 2014

which means every element is in a tree of one node by itself.
This is represented by v[x] = −1 for all x. Using this
representation, the two subsidiary operations on the data
structure are defined as follows:

• Union (x, y) = Link(Root(x),Root(y))

• Find (x, y) = (Root(x) == Root(y))

• Link (root1, root2): Modifies the partition by merging the
two roots

• Root (x) : Returns the root of the tree containing x

2.2 Shortcoming of the traditional Union-Find Algorithm

The algorithm takes the large amount of time in generating the
maze. So it is not applicable when number coordinates
increases. Hence construction of large mazes is time-
consuming. As the maze finds an application in gaming such
puzzle solving etc. so there is a need to construct the maze in
lesser time.

3. NEW IMPROVED DISJOINT-SET ALGORITHM

3.1 Proposed Algorithm

Step 1: Initialize a grid of r x c squares, where r denotes the
number of rows and c denotes the number of columns.

Initialize(int r, int c)
{
maze = new int [r*c];
for (int e = 0; e < r*c; e++)
maze[e] = e;
}

Step 2: Start with the entire grid subdivided into squares.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Fig. 2. Grid of 4x5 square

Step 3: Represent each square as a separate disjoint set.

Example-
{0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13}
{14} {15} {16} {17} {18} {19}

Step 4: Randomly choose a cell and mark it as a current cell.

Step 5: Initialize number of visited cells equal to one.

Step 6: Repeat the following algorithm-

1. Find the cells adjacent to the current cell-

 a) Let c denote the number of columns, r denotes the
number of rows and i denote the cell.

 b) If (i<c) then there is no cell above the cell i.

 c) If (i>=(r*c-c)) then there is no cell below the cell i.

 d) If (i%c==0) then there is no cell to the left of cell i.

 e) If ((i+1) %c==0) then there is no cell to the right of
cell i.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

0 1 i-c 3 4

5 i-1 i i+1 9

10 11 i+c 13 14

15 16 17 18 19

Fig. 3. Adjacent cells

2. Store the adjacent cells in an array.

3. Initialize a stack of capacity r x c and mark its top equal
to -1.

4. If the number of adjacent cells are greater than zero,
then-

5. Randomly choose one of the adjacent cells.

 a) Check whether the two cells are disjoint. That is, if
Find(x)! = Find(y), where x and y are two cells, then
they are said to be disjoint.

int find(int i)
{
return maze[i];
 }
If sets are disjoint then knock the wall = union the sets.
void UnionSets(int i, int j)
{
 if(isadjacent(i,j)==TRUE)
{
rooti=find(i);
rootj=find(j);
for (int k=0; k<r*c; k++)
if (maze[k] == rootj)
maze[k] = rooti;
}
}
d) Push the current cell on the stack and mark the unioned

cell as current cell.
e) Increment the number of visited cells.

Else pop the cell from the stack.

Maze Generation Using Disjoint-Sets with Stack 21

Journal of Basic and Applied Engineering Research (JBAER)
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 6; October, 2014

3.2 Working of algorithm

First enter the number of rows and columns and initialize a
grid of row*columns. Each cell of the grid is represented as a
separate disjoint set. Now randomly choose one of the cells
and mark it as a current cell and mark the number of visited
cells as 1. Inside a loop find the number of cells adjacent to
the current cell and store them in array. Also initialize a stack
and mark its top as empty. Check if the adjacent cells exist
then randomly choose one of them. Check whether the current
cell and the chosen adjacent cell lie in the same set or not. If
they are disjoint then union the two cells or knock the wall
between them. Now push the current cell in the stack and
mark the chosen adjacent cell as the current cell. Also
increment the number of visited cells. Otherwise if the number
of adjacent cells does not exist then pop the topmost cell from
the stack and continue with the loop checking for its adjacent
cells.

3.3 Analysis of new algorithm

This new algorithm has improved the time complexity. It can
be seen from the following table that this algorithm has
improved the working of traditional Disjoint-Set algorithm.

Table 1. Comparison between traditional Disjoint-Set algorithm
and new improved algorithm

 Original data Computing Time(ms)

Number of

rows

Number of

columns

Traditional

Algorithm

New

algorithm

4 5 63 47

8 8 187 140

10 10 219 203

20 20 781 735

30 30 1781 1625

50 50 5141 4031

Fig. 4. Comparative study of the two algorithms

This graph depicts the comparative study of the Disjoint-Set
algorithm and the new proposed algorithm. The y-axis
indicates the time and the x-axis indicates the number of
columns. The blue line stands for the new proposed algorithm
and the green line stands for the traditional Disjoint-Set
algorithm. It can be clearly seen that the computing time for
the two algorithms is almost same for small mazes but vary
largely for generating large mazes.

4. CONCLUSION

Disjoint-set algorithm had been used for various purposes.
This paper has found one of the applications of Disjoint-set
algorithm. By using it has improved the running time of the
algorithm which was earlier very large. By this the need to
generate the large maze in less time can be solved easily.

5. FUTURE SCOPE

This algorithm has used linear data structure and has improved
the time complexity of traditional Disjoint-Set algorithm.
Linear data structure is easy to implement. Further other
methods can be applied for generating the maze which has
multiple paths to the dead-end. In this paper disjoint-sets have
been used to generate the maze structure that gives a unique
solution. This method can also be used for more complex
maze structure with different geometrical structure than
rectangular structure.

REFERENCES

[1] T. Pasquier, J. Erdogan,”Genetic Algorithm Optimization in
Maze Solving Problem”, Institut Superieur d'Electronique de
Paris

[2] N. S. Choubey, “A-Mazer with Genetic Algorithm”,
MPSTME, SVKM’s NMIMS, Shirpur, Maharashtra, India,
International Journal of Computer Applications (0975-8887) 58
(17), November 2012

[3] T. Sukumar, Dr. K. R. Santha, “Maze Based Data Hiding Using
Back Tracker Algorithm” Department of IT, SVCE and
Department of EEE, SVCE, Anna University, India,
International Journal of Engineering Research and Applications
(IJERA) ISSN: 2248-9622, 2 (4), July-August 2012, pp. 499-
504.

[4] Maze Generation, ece.uwaterloo.ca.

[5] Maze classification, www.astrolog.org/labyrnth/algrithm.htm

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein,
“Introduction to Algorithms”, 2nd Edition, Pearson Education.

[7] Aho, Ullman, Hopcroft, “Design and Analysis of algorithms”,
Pearson Education.

[8] Union-Find Algorithm, www.cs.princeton.edu
/~rs/AlgsDS07/01UnionFind.

[9] Patwary, Manne, “Multi-core Spanning Forest Algorithms
using the Disjoint-Set Data Structure”, 2012 IEEE 26th
International Conference, pp-827- 835.

[10] Patwary, Palsetia, Agrawal, Manne, “A new scalable parallel
DBSCAN algorithm using the disjoint-set data structure”,2012
IEEE International Conference,pp-1-11.

