
Journal of Basic and Applied Engineering Research 
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 6; October, 2014  pp. 46-50 
© Krishi Sanskriti Publications 
http://www.krishisanskriti.org/jbaer.html 

 

Integrated Web applications with SOAP 
Girish M. Tere1, R. R. Mudholkar2, B. T. Jadhav3 

1Department of Computer Science, Shivaji University, Kolhapur,  Maharashtra – 416004, India 
2Department of Electronics, Shivaji University, Kolhapur, Maharashtra – 416004, India 

3Department of Electronics and Computer Science, Y.C. Institute of Science, Satara, Maharashtra - 415001, India 
 

 
Abstract: Recently Cloud based applications usage has increased. 
Web services play important role in cloud based applications. In 
this paper Web service is developed using PHP. PHP is server 
side scripting language with the power to connect to databases. 
Performance of Web services developed using PHP is better than 
those developed using .Net or J2EE technologies. A Web service 
is developed by building a SOAP server in PHP. A vehicle lookup 
service is created that takes in queries based on make, model, and 
year. The Web service will then query an internal database and 
respond appropriately. A Web-based client is also developed in 
PHP to communicate and query the SOAP server. Three SOAP 
servers in PHP are developed. Each of the three servers would be 
placed in three different cities or countries where a cluster of car 
dealerships would function. The client would then be hosted at 
one location where car customers would come and visit, firing 
search queries to find the vehicles of their needs. The client 
routes the query to each of the three SOAP servers, which, in 
turn, send results back to the client. Upon receiving each 
response, the client displays the search results to the user for 
analysis. Web services are becoming more popular because they 
are the perfect way to integrate several entities into one, allowing 
for better flow of information to management and to users. In 
this paper SOAP based Web service is developed which queries 
backend Derby database. Derby is open source light weight 
RDBMS having better performance than other RDBMS.  

1. INTRODUCTION 

Web application uses services from many servers which are 
developed in different platforms. Interaction between such 
servers and clients is possible with help of Web services. 
SOAP messages are exchanged between these applications. It 
is a standard for exchanging XML-based data via HTTP. This 
paper demonstrates development of PHP based Web services 
and uses Apache Derby database as backend. Clients can use 
these Web services and Web services fetches data from Derby 
database and returns to client.  

2. SOFTWARE USED 

The application is developed in Windows 7 Ultimate 
Operating System (64 bits). Following software is used for 
developing the application: 

• JDK 1.7 

• Database: Apaches Derby 10.10.2.0 

• XAMPP Server 1.8.3-5 with PHP 5.5.15 

• IBM DB2 ODBC Driver 

A Web service can hardly be useful without a database. One 
can use a database to store information about what a particular 
user queried or looked at during a visit. Most existing systems 
of large companies have a vast use of databases and 
information, making the use of databases vital for a successful 
Web service [1,4].  

Web site information is always stored in a database, and 
accessing such information via a Web service is just as 
important. The paper demonstrates how to integrate PHP Web 
service with a Derby database. 

3. SIMPLE SOAP SERVER IN PHP 

A simple SOAP server is created to understand basic PHP 
SOAP server capabilities [3]. This section explains 
development of SOAP server and how to use it. 

3.1 Creating a server 

A simple server takes a SOAP request and returns a response. 
A simple echo application is created in PHP that takes in a 
string and sends it back as shown in Listing 1. 

Listing 1. A simple SOAP server 

<?php  

function echoo($echo) 

{ return "ECHO: ".$echo;} 

$server = new SoapServer(null, array('uri' =>  

   "urn://teacher/res")); 

$server->addFunction('echoo'); 

$server->handle(); 

?> 

The echoo function returns the string passed to it and appends 
ECHO: to the front of it. The SoapServer object is created in 
PHP. The echoo function is added to the list of functions that 
the SOAP server supports. The last line calls the handle 



Integrated Web applications with SOAP 47 

Journal of Basic and Applied Engineering Research (JBAER) 
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 6; October, 2014 

method of the SoapServer object, allowing the server to 
handle the SOAP request and return a response, as defined in 
the echoo method. 

SOAP messages 

Pointing a browser to SOAP server in its current status causes 
a fault because of the way the request is sent. The data needs 
to be sent as raw POST data via HTTP, as described by the 
fault string. 

Listing 2. Pointing a browser to the SOAP server 
<SOAP-ENV:Envelope>  
<SOAP-ENV:Body> 
<SOAP-ENV:Fault> 
<faultcode>SOAP-ENV:Server</faultcode>  
<faultstring>Bad Request. Can't find 
 HTTP_RAW_POST_DATA</faultstring>  
</SOAP-ENV:Fault> 
</SOAP-ENV:Body> 
</SOAP-ENV:Envelope> 
Live server is accessed by a SOAP client. 

3.2 Creating a client: Echo form 
A client allows sending data to the SOAP server using the 
correct expected protocol. A simple form is created to accept 
any string and send it to the SOAP server. Form consists of 
one text box and a button. Form is created using PHP code as 
shown in Listing 3.  

Listing 3. Creating a simple form 
<?php 
$echo = $_GET['input']; 
print "<h2>Echo Web Service</h2>"; 
print "<form action='simple_client.php'  
 method='GET'/>"; 
print "<input name='input' 
 value='$echo'/><br/>"; 
print "<input type='Submit' name='submit' 
 value='GO'/>"; 
print "</form>"; 

Requests are sent to the SOAP server using GET or POST 
methods. The code first retrieves the value of input from the 
GET array or URL. Next, the form is created, with the action 
field being this same PHP script, simple_client.php, so GET 
requests from this form get sent to this same PHP script. There 
are two input tags: the text box where user will type the value 
to have returned from the SOAP server and the GO button. A 
preview of the form is shown in Figure 1. 

3.2.1 Creating a client: Making the request 

Once the button is clicked, the text in the text box, shown 
above, gets sent to the PHP script in the URL, which one can 
extract in the GET array. This allows us to verify that a 

request was sent and process it. PHP code for handling 
requests and sending them to SOAP server is mentioned in 
Listing 4. 

Listing 4. Handling requests and sending them to the SOAP 

server 

print "</form>"; 
if($echo != ''){  
$client = new SoapClient(null, array(  
'location' =>  
"http://localhost/soap/simple_server.php", 
'uri' => "urn://teacher/req"));  
$result = $client->  
 __soapCall("echoo",array($echo)); 
print $result;} 
?> 
 

Now if $echo has data in it, something was entered in the text 
box, and a request was made. This allows user to initiate the 
request to the SOAP server by creating the SoapClient object. 
The client knows where to send requests by the location in the 
parameters array. The uri gives the SOAP packet a namespace, 
which is essentially a context. Once the SoapClient is 
initialized, make the request to the SOAP server by calling the 
client's __soapCall method with two parameters: the method 
in the SOAP server and an array of parameters. The response 
sent from the SOAP server is displayed under the GO button, 
as shown in Figure 1. 

 

Fig. 1. Displaying response from the SOAP server 

Next multiple SOAP servers are created which use Apache 
Derby database as backend. 

3.3 Derby: Setting up 

Derby is used for this application because it's lightweight and 
easy to use. The application in this paper uses it to search for 
vehicles matching the search criteria.  

3.3.1 Creating the database 

Since PHP connects to Derby using the network server and 
ODBC [1], start the server by typing: 



48 Girish M. Tere, R. R. Mudholkar, B. T. Jadhav 

Journal of Basic and Applied Engineering Research (JBAER) 
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 6; October, 2014 

• Start Network Server 

• Output is shown in Figure 2. 

 

Fig. 2. Starting Derby Database 

When the application starts, it's ready to accept connections. 
Connect to and create a new database using the Derby ij tool 
as shown in Figure 3. 

 

Fig. 3. Use of ij Tool 

Getting ‘ij>’ one can enter database commands. The ij tool 
allows us to create and connect to databases, as well as query 
them [1]. This helps developers to fine-tune and perfect search 
queries before implementing them in PHP application. 
Following command is used to create and connect to the 
database: 

connect  
'jdbc:derby://localhost:1527/DEALER;create=true: 
user=dealer;password=dealer;'; 

Here, we have created the DEALER database with user and 
password being dealer. Next, appropriate PHP ODBC driver is 
used to connect/query to database. 

3.3.2 The DEALER database 

This database holds three tables -- one for each physical 
dealership location. Each location will have its own table in 
the database with vehicle data. And when queries from the 
SOAP client come to the SOAP server, each SOAP server will 
query its own database table and return the results for it. The 
three tables: 

• vehicles_mumbai 

• vehicles_delhi 

• vehicles_chennai 

Structure of these tables is shown in Figure 4. Each table 
contains the vehicles for each of three cities, which are created 
next. 

 

Fig. 4. Tables of DEALER database 

3.3.3. Creating the vehicle tables for each location 

The three tables for the dealership application are created 
using the ij tool. Tables are created using the SQL commands 
at the ij prompt, as shown in Listing 5.  

Listing 5. Create the three tables 

drop table vehicles_mumbai; 
create table vehicles_mumbai (make varchar(50), model 
varchar(50), yyear varchar(4), price integer, feature_desc 
varchar(512)); 
 
drop table vehicles_delhi; 
create table vehicles_delhi (make varchar(50), model 
varchar(50), yyear varchar(4), price integer, feature_desc 
varchar(512)); 
 
drop table vehicles_chennai; 
create table vehicles_chennai (make varchar(50), model 
varchar(50), yyear varchar(4), price integer, feature_desc 
varchar(512)); 

Each table has a make, model, yyear, price, and feature_desc 
describing a vehicle's features. The database skeleton is 
complete with the creation of these tables. Next few records 
are inserted in these tables. 

3.4 Architecting the user interface 

With the database ready to go, one can begin work on the PHP 
application. The application user interface with a form that 
takes in the make, model, and year of the vehicle being 
searched for is shown in Figure 5. 



Integrated Web applications with SOAP 49 

Journal of Basic and Applied Engineering Research (JBAER) 
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 6; October, 2014 

3.4.1 The header 

When a page is requested, the header appears at the top of the 
page, and placing those contents in a separate PHP script 
makes code modular and easier to read because one can 
simply include the header file at the top of a new script. A 
header.php file is created as shown in Listing 6.  

Listing 6. Creating a header file 
<?php 
$COMPANY_NAME="Car shoppee for us"; 
print(' 
<html> 
<title>'.$COMPANY_NAME.'</title> 
<body> 
<table width="650px" align="center" valign="top"> 
<tr><td colspan="2"> 
'); 
print(' 
</td></tr> 
<tr><td colspan="2"> 
<center><h1>Welcome to 
'.$COMPANY_NAME.'</h1></center></td></tr>'); 
print('<tr><td height="100%"> 
'); 
?> 

This sets up the HTML for the page, as well as a structure 
defined by the <table ...> tag and displays a greeting to 
visiting users. It ends by opening up a <td ...> tag. 

3.4.2 The footer 

The concept of a footer file is similar to the concept of a 
header file. With the header and footer file together, there is 
no need to write basic HTML tags (like <html><body>) ever 
again. This allows developer to focus on PHP development. A 
file created and called footer.php as shown in Listing 7. 

Listing 7. Creating a footer file 
</td></tr> 

<tr><td align="center" colspan="2"> 

<font size="2px"><br> 

<center>Copyright 2014, <?php print($COMPANY_NAME) 
?></center> 

</font> 

</td></tr></table> 

</body></html> 

This file closes off the <td ...> and <table ...> tags from the 
header, and displays a copyright. Looking up vehicles with a 
form with the header and footer created, one can focus on the 
main content of the user interface for the application. A file 
called index.php in created as shown in Listing 8. 

Listing 8. Creating the form used to search for vehicles 
<?php 
require('header.php'); 
$make = $_GET['make']; 
$model = $_GET['model']; 
$year = $_GET['year']; 
print "<h3>Search for vehicles based on year, make or 
model:</h3>"; 
print "<table>"; 
print "<form action='index.php' method='GET'>"; 
print "<tr><td>Make:</td><td><input name='make' 
value='$make'/></td></tr>"; 
print "<tr><td>Model:</td><td><input name='model' 
value='$model'/></td></tr>"; 
print "<tr><td>Year:</td><td><input name='year' 
value='$year'/></td></tr>"; 
print "<tr><td><input type='submit' name='submit' 
value='GO'/></td></tr>"; 
print "</form>"; 
print "</table>"; 
if($_GET['submit'] === 'GO' && ($make != '' || $model != '' || 
$year != '')){ 
print "<h3>Search Results:</h3>"; 
require('client.php'); 
} 
require('footer.php'); 
?> 

The form consists of three text input boxes: one each for 
make, model, and year. The code for the form is shown in 
Listing 8. Like the Echo form, the HTTP transfer method of 
this form is via GET because there will be no database or 
other side-effects caused by executing this query. Once the 
query is executing, the action field specifies that the form 
should send the data to this same index.php script. The first 
three lines of the script retrieve the data from the URL or GET 
array, which need to be processed next. Form is shown in 
Figure 5.  

 
Fig. 5. Car shoppee application 

3.4.3. Processing the form and calling the client 

Once a request has been made by a car customer, code needs 
to handle that request and call client code to request responses 



50 Girish M. Tere, R. R. Mudholkar, B. T. Jadhav 

Journal of Basic and Applied Engineering Research (JBAER) 
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 6; October, 2014 

from each of the three SOAP servers. PHP code for handling 
requests from the user interface is shown in Listing 9. 

Listing 9. Handling requests from the user interface 
print "</form>"; 
print "</table>"; 
if($_GET['submit'] === 'GO' &&  
($make != '' || $model != '' || $year != '')) 
{  
 
print "<h3>Search Results:</h3>";  
require('client.php'); 
} 
require('footer.php'); 
?> 

The request has been made by a car customer if they GET 
array's submit value equals GO. Now if the button got clicked 
and any one or more of the text boxes was filled in, initialize a 
request to the SOAP servers via the client code.  

3.4.4 The server 
Next the SOAP server is developed. The three SOAP servers 
get called by the client code, and each of them returns results, 
as found in their own local databases. The server is developed 
and by connecting to and querying the Derby database desired 
results are obtained.  

 
Fig. 6. Car shoppee application with search results 

3.4.5 Connecting to Derby 
Before the database can be queried, one needs to connect to it 
in PHP. A db_connect function is defined in all three sever 
files, as shown in Listing 10.  

Listing 10. Connecting to the DEALER database 
<?php 
function db_connect($dbname='DEALER', 
    $username='dealer', 
    $password='dealer') { 
$pdo = new PDO("odbc:$dbname", $username, $password); 

return $pdo; 
} 
function vehicleLookup($make, $model, $year){ 
… 
Output of some queries is shown in Figure 6 and Figure 7.  

 

 

Fig. 7. Car shoppee application with search results 

4. CONCLUSIONS 

A SOAP server in PHP is developed. Using developed Web 
services heterogeneous Web applications can be developed. 
To develop Web services PHP programming language is good 
choice as it is high performance server side scripting language 
and has ability to connect to various databases. As PHP and 
Derby both are open source software the cost of developing 
application will reduce. 

5. ACKNOWLEDGEMENTS 

This work was carried at Thakur College of Science and 
Commerce, Mumbai. Authors thank the Management Trustees 
and Principal to allowing us to use various resources required 
to complete the research. 

REFERENCES 

[1] Brett McLaughlin, PHP and MySQL: The Missing Manual, 
O’Reilly Media, Inc., 2012 

[2] Brian Hayes, Cloud Computing, JULY 2008, VOL. 51, NO. 7, 
COMMUNICATIONS OF THE ACM, pp 9-11, News 
Technology, DOI: 10.1145/1364782.1364786 

[3] Hasin Hayder, Object-Oriented Programming with PHP5, Packt 
Publishing, 2007 

[4] Lorna Jane Mitchell, PHP Web Services, O’Reilly Media, Inc., 
2013 

[5] Yogesh L. Simmhan, Beth Plale, Dennis Gannon, A survey of 
data provenance in e-science, Newsletter ACM SIGMOD 
Record Homepage archive, Volume 34 Issue 3, September 2005, 
Pages 31-36, ACM New York, NY, USA, DOI: 
10.1145/1084805.1084812 


