
Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 7; October, 2014 pp. 55-60
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/jbaer.html

Assuring Reliability of the Software using Component
Based Software Engineering

Rizwan Alam
1
, Mohammad Ubaidullah Bokhari

2

1,2
Department of Computer Science, Aligarh Muslim University, Aligarh

Abstract: Software reliability is the most measurable aspect of

software quality. Unlike hardware, software does not age, wear

out or rust, unreliability of software is mainly due to bugs or

design faults in the software. Software reliability is dynamic &

stochastic. Software reliability improvement is necessary & hard

to achieve. It can be improved by sufficient understanding of

software reliability, characteristics of software & sound software

design.

Software components as units of independent production,

acquisition, and deployment that interact to form a functional

system.Both the academic and commercial sectors have devoted

considerable effort to defining and describing the terms and

concepts involved in component-based software development.The

component-based systems approach could potentially overcome

difficulties associated with developing and maintaining

monolithic software applications. The authors believe that this

approach should result in better quality products, rapid

development, and an in-creased capability to accommodate

change.The authors identify a set of issues within an overall

framework that software developers must address for

component-based systems to achieve their full potential.

1. INTRODUCTION

Software reliability is defined as the probability of the failure
free operation of a software system for a specified period of
time in a specified environment.

Software application reliability is defined as follows [1]:

• “The probability of a given system performing its task
adequately for a specified period of time under the
expected operating conditions”.

• “The probability that software will provide failure-free
operation in a fixed environment for a fixed interval of
time”.

Software reliability differs considerably from program
“correctness”. A program is consistent with its specification,
while reliability is related to the dynamic demands that are
made upon the system and the ability to produce a satisfactory
response to those demands.

The exact value of product reliability is never precisely known
at any point in its lifetime. The study of software reliability
can be categorized into three parts: Modeling, Measurement
and improvement. Many Models exist, but no single model
can capture a necessary amount of software characteristics.
There is no single model that is universal to all the situations.
Simulations can mimic key characteristics of the processes
that create, validate & review documents & code. Software
reliability measurement is naive. It can’t be directly measured,
so other related factors are measured to estimate software
reliability.

1.1Software reliability and Hardware reliability:

Software reliability is not a direct function of time. Hardware
parts may become old and wear out with time, but software
will not change over time unless the software is changed or
modified intentionally.

In Hardware reliability, in the first phase of the manufacturing,
there may be a high number of faults. But after discovering
and removing faults this number may decrease and gradually
in the second phase (Useful life), there exists only a few
number of faults. After this phase, there will be wear out phase
in which, the physical component wear out due to the time and
usage and the number of faults will again increase.

Fig1.Phases of hardware when considering reliability

Fig2.Phases of software when considering reliability

But in software reliability, at the first phase, i.e while testing
and integration there will be high number of faults, but after
removing the faults, there exists only a few number of faults

Burn

In

Useful

Life
Wear out

Integration
and testing

Useful
life obsolete

56 Rizwan Alam, Mohammad Ubaidullah Bokhari

Journal of Basic and Applied Engineering Research (JBAER)
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 7; October, 2014

and this process of removing the faults continues at a slower
rate . Software products will not wear out with time and usage,
but may become outmoded at a later stage.

1.2Software Metrics for Reliability:

The Metrics are used to improve the reliability of the system
by identifying the areas of requirements (for specification),
Coding (for errors), Testing (for verifying) phases.The
different types of Software Metrics that are used are

a) Requirements Reliability Metrics:-

Requirements indicate what features the software must
contain. So for this requirement document, a clear
understanding between client and developer should exist.
Otherwise it is critical to write these requirements .The
requirements must contain valid structure to avoid the loss of
valuable information.The requirements should be thorough
and in a detailed manner so that it is easy for the design phase.
The requirements should not contain inadequate information.

Next one is to communicate easily .There should not be any
ambiguous data in the requirements. If there exists any
ambiguous data, then it is difficult for the developer to
implement that specification. Requirement Reliability metrics
evaluates the above said quality factors of the requirement
document.

b) Design and Code Reliability Metrics

The quality factors that exists in design and coding plan are
complexity, size and modularity.If there exists more complex
modules, then it is difficult to understand and there is a high
probability of occurring errors. So complexity of the modules
should be less.Next coming to size, it depends upon the factors
such as total lines, comments, executable statements etc.
According to SATC, the most effective evaluation is the
combination of size and complexity.The reliability will
decrease if modules have a combination of high complexity
and large size or high complexity and small size. In the later
combination also the reliability decreases because, the smaller
size results in a short code which is difficult to alter.

c) Testing Reliability Metrics:

Testing Reliability metrics uses two approaches to evaluate
the reliability.First, it ensures that the system is fully equipped
with the functions that are specified in the requirements.
Because of this, the errors due to the lack of functionality
decreases.Second approach is nothing but evaluating the code,
finding the errors and fixing them.

The current practices of software reliability measurement can
be divided into four categories.

1) Product metrics

2) project management busy

3) process metrics

4) Fault and failure metrics

As discussed earlier software size and complexity plays an
important role in design and coding phase. One of the product
metrics called function point metric is used to estimate the size
and complexity of the program.

Project Management metrics increases reliability by
evaluating the Management process whereas process metrics
can be used to estimate, monitor and improve the reliability
and quality of the software.The final one, Fault and Failure
Metrics determines, when the software is performing the
whole functions that are specified by the requirement
documents without any errors. It takes the faults and failures
that arises in the coding and analyzes them to achieve this
task.

2. RELIABILITY REQUIREMENTS

For any system, one of the first tasks of reliability engineering
is to adequately specify the reliability and maintainability
requirements derived from the overall availability needs and
more importantly, from proper failure analysis or preliminary
test results. Setting only availability targets is not appropriate.
Reliability requirements address the system itself, including
test and assessment requirements, and associated tasks and
documentation. Reliability requirements are included in the
appropriate system or subsystem requirements specifications,
test plans and contract statements. Creation of proper lower
level requirements is critical.Provision of only quantitative
minimum targets (e.g. MTBF values/ Failure rates) is not
sufficient for different reasons. One reason is that a full
validation (related to correctness and verifiability in time) of
an quantitative reliability allocation (requirement spec) on
lower levels for complex systems can (often) not be made as a
consequence of

1) The fact that the requirements are probabilistic.

2) The high level of uncertainties involved for showing
compliance with all these probabalistic requirements.

3) Reliability is a function of time and accurate estimates of
a (probabalistic) reliability number per item are available
only very late in the project, sometimes even only many
years after in-service use.

Compare this problem with the continues (re-)balancing of for
example lower level system mass requirements in the
development of an aircraft, which is already often a big
undertaking. Notice that in this case masses do only differ in
terms of only some %, are not a function of time the data is
non-probabalistic and available already in CAD models. In
case of reliability, the levels of unreliability (failure rates) may
change with factors of decades (1000's of %)as result of very
minor deviations in design, process or anything else.

Assuring Reliability of the Software using Component Based Software Engineering 57

Journal of Basic and Applied Engineering Research (JBAER)
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 7; October, 2014

The information is often not available without huge
uncertainties within the development phase. This makes this
allocation problem almost impossible to do in a useful,
practical, valid manner, wich does not result in massive over-
or under specification. A pragmatic approach is therefore
needed. For example; the use of general levels / classes of
quantitative requirements only depending on severity of
failure effects. Also the validation of results is a far more
subjective task than for any other type of requirement.
(Quantitative) Reliability parameters -in terms of MTBF - are
by far the most uncertain design parameters in any design.

Furthermore, reliability design requirements should drive a
(system or part) design to incorporate features that prevent
failures from occurring or limit consequences from failure in
the first place! Not only to make some predictions, this could
potentially distract the engineering effort to a kind of
accounting work. The predicted failure probabilities of the
elementary services are composed using different
compositional structures to predict the reliability of the whole
software system[2]. A design requirement should be so precise
enough so that a designer can "design to" it and can also prove
-through analysis or testing- that the requirement has been
achieved, and if possible within some a stated confidence.

Any type of reliability requirement should be detailed and
could be derived from failure analysis (Finite Element Stress
and Fatigue analysis, Reliability Hazard Analysis, FTA,
FMEA, Human Factor analysis, etc.) or other lower part or
material level reliability tests, e.g. required overload loads (or
stresses) and test time needed. To derive these requirements in
an effective manner, a systems engineering based risk
assessment and mitigation logic should be used. These
practical design requirements shall be part of the output from
functional or other failure analysis or tests. These
requirements (often design constraints) are in this way derived
from failure analysis or preliminary tests. Understanding of
this difference with only pure quantitative requirement
specification (e.g. Failure Rate / MTBF)is paramount in the
development of successfull (complex) systems. For the
reliability prediction, we can use the PCM Markov translator
[3], which predicts a probability of failure on demand for the
system of 0.0605 percent.

The maintainability requirements address the costs of repairs
as well as repair time. Testability requirements provide the
link between reliability and maintainability and should address
detectability of failure modes (on a particular system level),
isolation levels and the creation of diagnostics (procedures).

As indicated above, reliability engineers should also address
requirements for various reliability tasks and documentation
during system development, test, production, and operation.
These requirements are generally specified in the contract
statement of work and depend on how much leeway the

customer wishes to provide to the contractor. Reliability tasks
include various analyses, planning, and failure reporting.

Task selection depends on the criticality of the system as well
as cost. A safety critical system may require a formal failure
reporting and review process throughout development,
whereas a non-critical system may rely on final test reports.
The most common reliability program tasks are documented in
reliability program standards, such as MIL-STD-785 and
IEEE 1332. Failure reporting analysis and corrective action
systems are a common approach for product/process reliability
monitoring.

Several reliability issues and metrics proposed by researchers
for CBS. Sharma et.al. [4] propose a link list based
dependency representation and implements it by using Hash
Map in Java.

There are three main models on which the reliability analysis
approaches are based

• State based Models.

• Path based Models

• Additive Models.

3. COMPONENT BASED SOFTWARE

ENGINEERING

Component-based software engineering (CBSE)
orComponent-Based Development (CBD)) is a branch of
software engineering that emphasizes the separation of
concerns in respect of the wide-ranging functionality available
throughout a given software system. It is a reuse-based
approach to defining, implementing and composing loosely
coupled independent components into systems. This practice
aims to bring about an equally wide-ranging degree of benefits
in both the short-term and the long-term for the software itself
and for organizations that sponsor such software.

Software engineering practitioners regard components as part
of the starting platform for service-orientation. Components
play this role, for example, in web services, and more recently,
in service-oriented architectures (SOA), whereby a component
is converted by the web service into a service and
subsequently inherits further characteristics beyond that of an
ordinary component. Components can produce or consume
events and can be used for event-driven architectures (EDA).A
component model is a definition of standards for component
implementation, documentation and deployment. Examples of
component models are: Enterprise JavaBeans (EJB) model,
Component Object Model (COM) model, .NET model and
Common Object Request Broker Architecture (CORBA)
component Model. The component model specifies how
interfaces should be defined and the elements included in an
interface definition.

58 Rizwan Alam, Mohammad Ubaidullah Bokhari

Journal of Basic and Applied Engineering Research (JBAER)
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 7; October, 2014

CBS reliability greatly depends upon the interaction among
components. Interaction promotes dependencies[5]. Higher
dependency leads to a complex system, Hence reliability
estimation will be difficult. Usually dependency is represented
by an adjacency matrix. However, this representation can
check only for the presence of dependencies between
components and does not consider the type of interactions.
Interaction types have a significant contribution to the
complexity of system, hence the reliability. CBSE improves
productivity, quality and reusability and reduce maintenance
overheads and time to market. CBSE comprises of two
separate but related processes namely component engineering
and application engineering. The former is concerned with the
analysis of domains and development of generic and domain-
specific reusable components while the latter involves
application development using commercial off-the-shelf
components (COTS) or components that have been developed
in-house.

3.1 Advantages of CBSE

(a)Functionality: Component-based systems are at a
functional levelmuch more adaptable and extendable than
traditional systems, because most of the new functionality can
be reused some way or another or derived from already
existing components.

(b) Reusability: In principle, CBD enables the development
ofcomponents which completely implement a technical
solution or a business aspect. Such components can be used
everywhere.Reusability is an important characteristic of a
high-quality software component. Programmers should design
and implement software components in such a way that many
different programs can reuse them. Furthermore, component-
based usability testing should be considered when software
components directly interact with users.It takes significant
effort and awareness to write a software component that is
effectively reusable. The component needs to be:

• fully documented

• thoroughly tested

• designed with an awareness that it will be put to
unforeseen uses

(c) Maintainability: In a component-based system a piece of
functionality ideally is implemented just once. It is self-
evident this results in easier maintenance, which leads to
lower cost, and a longer life for these systems.New
applications will consist for a very large part of already
existing components. Building a system will look more like
assembly than really building.

3.2 Common Requirements for Component Based Reliability

Models

(a) To Identify the Component

Standard software engineering concept of a component is the
basic entity in the architecture based approach. Component

can be independently designed, implemented, and tested. User
can define the component which depends on the factors such
that probability of getting required data.

(b) Software Architecture

Software architecture is the way of defining the software
behavior with respect to the manner in which different
software components interact with each other.

(c) Failure Behavior

Failure behavior is also associated with software architecture.
Components failure behaviour can be expressed in terms of
their reliabilities or failure rates.

(d) Combining the architecture with the failure behavior

There are three different approaches that are used to combine
the software architecture with the failure behavior. These
approaches are namely: state based approach, path based
approach and additive approach.

4. RELIABILITY MODEL FOR COMPONENT

BASED SYSTEMS

CBS reliability greatly depends upon the interaction among
components. Interaction promotes dependencies. Higher
dependency leads to a complex system, Hence reliability
estimation will be difficult. Usually dependency is represented
by an adjacency matrix. However, this representation can
check only for the presence of dependencies between
components and does not consider the type of interactions.
Interaction types have a significant contribution to the
complexity of system, hence the reliability[6].

CBSE improves productivity, quality and reusability and
reduce maintenance overheads and time to market.The
growing importance of software dictates that the software
reliability is the major stumbling block in highly dependable
computer system.

To support these techniques, testing models used to check
software developed based on CBSE are needed to:

1. Explain the dependency of failure probability for
software on its components.

2. Exploit reused software components of known reliability
in estimating overall software system reliability.

There is a need of such type of models which is based upon
the system architecture. Many reliability models based upon
the system architecture have been proposed. These models are
known as Architecture Based Reliability Model.Architecture

Assuring Reliability of the Software using Component Based Software Engineering 59

Journal of Basic and Applied Engineering Research (JBAER)
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 7; October, 2014

based software reliability techniques may be used for the
following reasons:

(i) To develop a method that analyzes the application
reliability built from the COTS software components.

(ii) To understand system reliability dependency on
individual component reliabilities and their
interconnection mechanism.

Swapna S. Gokhale [7] proposed some limitations for
architecture based analysis technique. She classified the
limitations into five categories namely modeling, analysis,
parameter estimation, validation and optimization. Modeling
limitations include concurrent execution, non markov transfer
of control, non exponential sojourn time, and interface failures
etc. Analysis limitation includes reliability estimation,
sensitivity and interface analysis, uncertainty quantification
etc.

There are so many models for reliability analysis that can be
incorporated with Component Based Development. A
sensitivity analysis is also performed to know the effect of
each node on the system reliability[8]. For example, Chao-
Jung Hsu’s Adaptive Reliability Analysis Using Path Testing
is an adaptive approach for testing path into reliability
estimation for complex component based systems. For path
reliability estimation three methods have been proposed
namely sequence, branch and loop structures.A promising
estimation of software reliability can be given by this
approach when testing information is available.In addition,
rules as presented in [9, 10, 11] could be integrated in
specialized components.

5. LIMITATIONS AND FUTURE WORK

Besides inheriting all limitations of the underlying quality
prediction techniques for our approach exhibits the following
limitations:

a) No guaranteed optimality: The approach itself is a best
effort approach and does not guarantee to find the real
Pareto-front, i.e. the globally optimal solutions, because
metaheuristics are used.

b) Questionable efficiency: As the evaluation of each
candidate solution, mainly due to the
performanceevaluation, takes several seconds, the
overall approach is considerably time consuming. Here,
software architects should run it in parallel to other
activities orovernight. A distribution of the analyses on a
cluster of workstations could lead to significant
improvements. It could also be possible to split the
optimization problem into several independent parts that
are solved separately and thus quicker. Problem-specific

heuristics allowing faster convergence and thus requiring
less evaluations are a crucial extension.

c) No regard for uncertainties: For the results, uncertainty
of estimations, uncertainty of the workload, and the
resulting risks are not taken into account. Here,
sensitivity metrics could be an additional quality
criterion.

This paper estimates the reliability factor issues of data for
different metrics of software process model under Component
Based Software Engineering..An important aspect of future
work is to combine our approach with subordinate heuristics
to make use of performance domain knowledge to assure the
reliability of each component of the software eventually
leading to the reliability of the whole software. For example,
heuristics to improve allocation based on the resource
demands of components and utilization.

6. CONCLUSION

Reliability is an attribute of quality and software quality can
be measured .So reliability depends on high software quality.
So at each development phase, some quality attributes are
applied and the reliability and quality of the software can be
improved by applying software metrics at each of these
development phases. This metrics measures software
reliability in Requirements, Design and coding, and testing
phases.

We considered some criteria on basis of which we examined
the available approaches as scope, model, technique, method
and critique. Most of the proposed approaches are
mathematical and based upon the operational profile.To
calculate the overall application reliability existing work take
two important considerations one is reliability of individual
component and another is operational profiles of the system.

REFERENCES

[1] ANSI/IEEE, 1991 Standard Glossary of Software Engineering

Terminology, STD-729-1991

[2] Franz Brosch, " Reliability Prediction for Fault-Tolerant

Software Architectures”, QoSA+ISARCS’11, June 20–24, 2011,
Boulder, Colorado, USA. ACM 978-1-4503-0724-6/11/06 (pp
75-84)

[3] F. Brosch and B. Zimmerova.Design-Time Reliability Prediction

for Software Systems.In Proceedings of the International

Workshop on Software Quality and Maintainability (SQM'09),
pages 70{74, March 2009.

[4] Arun Sharma, P.S.Grover, Rajesh Kumar, 2009, Dependency

Analysis for Component Based Software Systems,
ACMSIGSOFT Software Engineering Notes Vol. 34, No 4 pp 1-
6.

[5] S. Becker, H. Koziolek, and R. Reussner.aThePalladio

component model for model-driven performance prediction. J.
of Systems and Software, 82:3{22, 2009.

60 Rizwan Alam, Mohammad Ubaidullah Bokhari

Journal of Basic and Applied Engineering Research (JBAER)
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 7; October, 2014

[6] H. Koziolek and F. Brosch.Parameter dependencies for

component reliability specifications. In Proc. of Workshop on

Formal Engineering approaches to Software Components and

Architectures. Elsevier, 2009.

[7] S. Gokhaleet al.2007, Architecture Based Software Reliability

Analysis: Overview and Limitations.IEEE Transactions on
Dependable and Secure Computing.pp 32-40.

[8] Chao-Jung Hsu and Chin-Yu Huang, 2011, An Adaptive

Reliability Analysis Using Path Testing for Complex Component

based Software Systems, IEEE transaction on reliability Vol. 60,
No 1 pp 158-170.

[9] J. Xu. Rule-based automatic software performance diagnosis

and improvement.In Proc. of WOSP'08, pages 1{12, New York,
NY, USA, 2008.ACM.

[10] J. Xu. Rule-based automatic software performance diagnosis

and improvement.In Proc. of WOSP'08, pages 1{12, New York,
NY, USA, 2008.ACM.

[11] V. Cortellessa and L. Frittella.A framework for automated

generation of architectural feedback from software performance

analysis. In K. Wolter, editor, Proc. of Fourth European
Performance Engineering Workshop, volume 4748 of Lecture
Notes in Computer Science, pages 171{185. Springer, 2007.

[12] J. D. McGregor, F. Bachmann, L. Bass, P. Bianco, and M.
Klein. Using arche in the classroom: One experience. Technical

Report CMU/SEI-2007-TN-001, Software Engineering Institute,
Carnegie Mellon University, 2007.

