
Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 7; October, 2014 pp. 76-78
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/jbaer.html

File Sharing using Python in Peer to Peer Networks
Shantanu Khandelwal

University Institute of Engineering and Technology, Panjab University, Chandigarh, India

Abstract: Peer-to-Peer (P2P) systems are widely used as “file-

swapping” networks to support distributed content sharing.

Quite a good number of P2P networks for file sharing have been

developed and deployed. This paper presents content sharing in

P2P networks using python SimpleHTTPServer.

Keywords: file sharing; multiprocessing; P2P Networks; python;

SimpleHTTPServer

1. INTRODUCTION

Peer to peer networking has emerged as a viable business
model and systems architecture for Internet scale applications.
It is an effective way to build applications that connect
millions of users across the globe without reliance on specially
deployed servers. It is an alternative to distributed computing
which works on client/server model. All the nodes here are
equal. In peer-to-peer (P2P) networks two or more computers
are connected with each other in such a way that they can
share resources without the need for a server by direct
exchange between systems. The networks can be small or
large ranging from a few computers connected through USB
or a small network in any organization or a network on the
internet in which the computers have relationships with other
computers through special protocols and applications. The
existing computing power and network connections are used
to benefit the entire organization by sharing computer
resources and services.

Fig. 1: The Client/Server Model

Decentralization, which is a key feature in P2P networks has
several implications. There are numerous benefits P2P
networks can provide such as scalability, reliability and ease
of distribution. They have built-in fault tolerance, replication
and load balancing capability. This capability comes from
redundancy and shared responsibility. Although access control
is difficult in P2P networks.

Fig. 2: The Peer-to-Peer Model

All the three valuable fundamental assets of Internet, namely
information, bandwidth and computing resources are
underutilized as Internet is a client /server model. It is difficult
to find information and it is impossible to create index and
catalog. With regards to Bandwidth, the hot links become
hotter and the cold ones remain cold. As far as computing
resources are concerned, the heavily loaded nodes become
more overloaded and the idle nodes never become heavily
loaded. Centralized systems and client-server systems operate
in controlled environments but in a P2P network the users can
openly share files and devices.

2. FILE SHARING

File sharing is the public or private sharing of computer data
such as movies, games, books, music in a network using a
specialized P2P software program. Various levels of access
privileges can be given for the files shared. The same files can

Laptop

Mobile

Desktop

Pager

Server

Client

Server

Client

Client

Client

File Sharing using Python in Peer to Peer Networks 77

Journal of Basic and Applied Engineering Research (JBAER)
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 7; October, 2014

be used by different users in different ways. Users may be able
to read, write, copy, modify, and even print it. The advantage
of file sharing in peer to peer networks is that files are not
saved on any other server so they are secure. There is no
requirement of Internet.

3. LITERATURE SURVEY

A large number of P2P file sharing programs are increasingly
popular. Shareaza, Bit Torrent, Ares, BearShare, Kazaa,
Morpheus, Limewire, eDonkey, eMute, WinMx are some of
them. Each program is characterized by either large setup size,
slow speed, too much CPU usage, embedded advertising,
grind to hault, wasted data downloaded, incompatibility. Also,
some of them run only on one or two platforms, do not allow
surfing the Internet or otherwise utilize the network when files
are uploaded or downloaded.

4. APPROACH

For file sharing we have used multi-threading programming
and execution model which provides a useful abstraction of
concurrent execution. The advantage of the multi-threaded
environment is parallel and faster execution. Using
multiprocessing, the application can manage multiple requests
by the same user or different users and remain responsive to
input. If single-threaded program is used and, if the main
execution thread blocks on a long-running task, the entire
application can freeze at any time. If LAN is available
between sender and receiver then it uses it. But even if LAN is
not available it can use appropriate hardware like WIFI
adapter available in laptops and create a hotspot on the fly
with WPA2-PSK encryption technique. In either case, the
module generates a URL that you have to share with the
receiver.

File sharing using Python SimpleHTTPServer does not require
any receiver side software. Only a web browser is required at
the receiver side which is readily available. The script for file
sharing coded in Python 2.7 is stored at the sender side. Since
Python is platform independent, this script is also platform
independent. The sender only requires a fair knowledge of
directory structure to send the files. The script generates a
URL which depends on the local IP address of the sender. If
Internet is available at the time of file sharing, URL shortening
services like tinyURL can be used which generates a small
and readable URL and if not then the URL generated by the
script is conveyed to the receiver side by any suitable means.

A. SimpleHTTPServer

SimpleHTTPRequestHandler class which has its interface
compatibility with BaseHTTPServer.BaseHTTP Request

Handler is defined by the SimpleHTTP Server module. The
SimpleHTTPServer module defines the following class:
Class

SimpleHTTPServer.SimpleHTTPRequestHandler(request,
client_address, server)

This class maps the directory structure to HTTP requests and
files are served from the current directory and below. Parsing
the request, is done by the base class
BaseHTTPServer.BaseHTTPRequestHandler. do_GET()

and do_HEAD() functions are implemented by this class

B. SimpleHTTPRequestHandler

Following methods are defined by The
SimpleHTTPRequestHandler class :

• do_HEAD() To serve the ‘HEAD’ request type this
method is called. This would send the headers for the
requests which are equivalent to GET request.

• do_GET() This method is used to handle GET request.
This gives relative path to the current working directory
which is then mapped to a local file. It is also used to
place all the parameters on the URL.

After the request is mapped to a directory, a file named
index.html or index.htm (in that order) is searched in the
current working directory. If the file index.html is found, its
contents are returned and if not then a directory listing is
displayed by calling the list_directory() method. The
list_directory() method uses os.listdir() so as to scan the
directory, and a 404 error response is returned if the listdir()
fails. If the request was mapped to a file, the requested fileis
opened and it’s contents are sent. If there is any error then an
IOError exception in opening the requested file is mapped to a
404, 'File not found' error. The guess_type() method is then
called to guess the content type, The guess_type() method in
turn uses the extensions_map variable.

C. Multiprocessing

The Multiprocessing package uses an Application
Programming interface to support the called processes. It is
like a threading module. The package thus allows concurrency
at both local and remote level. The Multiprocessing package
thus avoids the Global Interpreter Lock because in
Multiprocessing sub processes are used instead of threads.
Thus full advantage of multiple processors can be achieved by
the programmer by the usage of multiprocessing module on a
given machine. It is platform independent and can run on both
Unix and Windows.

An API similar to the threading module is used by the
Multiprocessing package that supports spawning processes.
Both local and remote concurrency are offered by the
multiprocessing package, which effectively side-steps the
Global Interpreter Lock by using sub processes instead of
threads[4]. Due to this, the multiprocessing module allows the
programmer to fully leverage multiple processors on a given
machine.

In Multiprocessing, after creating a Process object and the its
start() method is called new processes are generated. The new

78 Shantanu Khandelwal

Journal of Basic and Applied Engineering Research (JBAER)
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 7; October, 2014

processes generated follow the Application Programming
interface of threading.Thread.

• start() Starts the process’s activity. This method is called
only one time for every process object. After this method
is over the object’s run() method is called in a separate
process.

• join([timeout]) When this method is called, the thread that
called it is blocked. When the join method is terminated
either automatically or timeout, the calling thread is
unblocked. Unlike start() method, the join() method can
be called any number of times once it is started. Also
joining of a process with itself is avoided as it will lead to
deadlock

To implement the No-Pendrive script simpleHTTPServer of
Pyhton module(package)[2], [3] has been used which is a built
in web server in Python that provides standard GET and
HEAD request handlers. An advantage with the built-in HTTP
server is that we do not have to install and configure anything.
The only thing we need is to have Python installed.

D. SimpleHTTPServer Usage
To only serve on localhost
import sys
import BaseHTTPServer
from SimpleHTTPServer
import SimpleHTTPRequestHandler
HandlerClass = SimpleHTTPRequestHandler
ServerClass = BaseHTTPServer.HTTPServer
Protocol = “HTTP/1.0”
if sys.argv[1:]:
port = int(sys.argv[1])
else:
port = 8000
server_address = ('127.0.0.1', port)
HandlerClass.protocol_version = Protocol
httpd = Server-Class(server-address, Handler-Class)
sa = httpd.socket.getsockname()
print "Serving HTTP on", sa[0], "port", sa[1], "..."
httpd.serve_forever()

E. Multiprocessing Usage
from multiprocessing import Process
import os
def info(title):
print title
print 'module name:', __name__
if hasattr(os, 'getppid'): # only available on Unix
 print 'parent process:', _os.getppid()
print 'process id:', _os.getpid()
def f(name):
info('function f')
print 'hello', name
if __name__ == '__main__':
info('main line')
p = Process(target=f, args=('bob',))
p.start()

p.join()

F. NoPendrive Script Usage

Assume that we would like to share the directory
/home/somedir and sender IP address is 192.168.10.2
Open up a terminal and type: $ nopendrive
The module requires port number and the directory name to
share as input. The module will then generate some URL such
as http://192.168.10.2:8000. Convey this URL to the receiver
to receive the file sent. If the client is using any download
manager and becomes offline between file sharing, then he
can continue from where he left off. But if the server goes
offline in between, the entire file has to be resent again.

5. CONCLUSION

Python's SimpleHTTPServer is a great way to serve the
contents of the current directory from the command line: An
advantage with the built-in HTTP server is that we do not have
to install and configure anything. A super-simple script lets us
instantly share files across a local network. The application is
very light weight. It size is just about 2 MB. The application is
free from the discovery process in peer to peer architectures.
Any unused port can be used for file sharing between the
server and the client.

P2P file sharing system using python has not been plagued by
several problems for users. The providers of leading P2P file
applications can earn revenue from third parties by embedding
spyware and malware into the applications. Users then find
their computers infected with such software immediately after
installing the P2P application. Secondly, a large amount of
corrupted or polluted content has been published in file
sharing systems and it is difficult for users to distinguish such
content from the original digital content they seek[1]. Also,
the leading P2P file sharing systems have not adopted
mechanisms to protect licensed contents or collect payments
for transfers on behalf of copyright owners. Several ventures
seek to legitimate P2P file sharing for licensed contents by
incorporating techniques for Digital Rights Management
(DRM) and super distribution in P2P distribution
architectures. When such techniques are used, content is
required to be encrypted. So even if it can be freely distributed
purchasing an encrypted license file to render the media is
required by the user.

REFERENCES

[1] John F. Buford, Heather Yu, Eng Keong Lua “P2P Networking
and Applications”

[2] http://www.linuxjournal.com/content/tech-tip-really-simple-
http-server-python

[3] http://docs.python.org/2/library/simplehttpserver.html

[4] http://docs.python.org/2/library/multiprocessing.html

