
International Journal of Basic and Applied Biology
Print ISSN: 2349 – 5820; Online ISSN: 2349 – 5839; Volume. 2 No. 2, November 2014. pp. 23 – 27
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/ijbab.html

An Improved Algorithm for Reducing the Solution
Space of Sorting by Reversals

Beethika Tripathi1, Amritanjali2

Department of Computer Science and Engineering
Birla Institute of Technology

Mesra, Ranchi, Jharkhand, India 835215.

Abstract: The goal of this paper is to give an efficient algorithm
for sorting the genome with respect to other genome using
reversal operation and to generate the optimum traces. Usually
the number of solutions is large so solution space can be
represented in compact manner by grouping equivalent
solutions into traces. To reduce the memory requirement depth
first approach is employed. Still there are some traces having
reversals that are biologically not possible so it is of no use to
further study them so such traces are discarded by applying
some biological constraints at each step of the process for
generating traces. This approach not only reduces memory and
time consumption but also makes it easier to parallelize and a
better evolutionary scenario of genomes is characterized. This
allows us to efficiently handle large permutations so that the
exploration time is visibly reduced.

1. INTRODUCTION

Genetic rearrangement over a period of time leads to
evolution. Reversal is one of the most commonly observed
evolutionary events [1]. In this a segment of a chromosome
gets flipped, thereby reversing the order and orientation of the
genes in that segment. By comparing the shared gene order in
two genomes that have evolved by reversals events, their
evolutionary scenario is reconstructed.

Sorting by reversals is defined as the problem of finding
the minimal sequence of reversals that can transform the
shared gene order of one of the given genome into that of
another. Till now lots of study has been done on finding the
reversal distance (minimum number of reversals) between
two given genomes and generating corresponding sequence of
reversals.

Genomes are represented as permutations where duplicate
genes are not allowed. When the permutation is unsigned the
sorting by reversal problem is NP-hard [2]. In 1995
Hannenhalli and Pevzner [3] for the first time gave a proof of
solving it in polynomial time for the signed versions of the
problem. Since then, many solutions were given with speed

and memory utilization improvements. Later Siepel and
Ajana et al. [5-6] proposed an algorithm that listed all sorting
reversals (ASR) in O(n3) time complexity. By repetitively
applying their algorithms, Siepel generated All Sorting
Sequences by Reversals (ASSR) that transforms one genome
into another. Later an improved version of their algorithm
was given whose average-case complexity is O(n2) [7].
Bergeron et al. [8] grouped those sequences into equivalence
classes and gave the concept of traces [9] to represent them
into normal form thereby reducing the solution set. However,
no algorithm was given. Braga et al. [10-11], developed an
algorithm by combining the results of Siepel and of Bergeron
et al. that enumerates the normal form of every trace and
provides the count of the number of sorting sequences.
Baudet et al. [12] used the approach of exploring the solution
space in depth first manner using stack and listed normal
forms of traces to represent classes of sorting sequences this
drastically reduced the memory usage. But their algorithm
could not find the total number of solutions. So Amritanjali
and Sahoo [13] proposed a modified approach to count the
total number of possible solutions while generating the traces
are generated in depth first manner.

However, for most of the genomes there can several
sequences and the solution space increases exponentially with
reversal distance and number of shared genes. Each sequence
describes a probable to actual scenario can be deduced by
applying some biological constraints. Very large number of
possible sequences makes their analysis difficult and listing
them requires lots of memory and time. Application of
biological constraints like common intervals [15] can help to
discard reversals that are less probable, reducing the solution
space. In the proposed algorithm, we are applying this
constraint to generate solutions that are preserving the
conserved segments. Also, the solutions are generated in
depth first manner and they are grouped into equivalence
classes for compact representation. Reduction of solution

http://www.krishisanskriti.org/ijbab.html

Beethika Tripathi, Amritanjali

International Journal of Basic and Applied Biology
Print ISSN: 2349 – 5820; Online ISSN: 2349 – 5839; Volume 2, Number 2; November, 2014

24

space not only decreases computation time but also makes
their analysis easier. Moreover, depth first approach requires
less memory and is easier to parallelize.

2. BACKGROUND

2.1. Basics

Unichromosomal genomes without duplication of genes
are considered in our study. Genomes are represented by the
list of homologous markers (usually genes or blocks of
contiguous genes) between them. Signed integers are used to
represent the markers where sign denotes the orientation of
markers on one genome with respect to the other genome.
The signed permutation π = (π1 . . πn) of size n is used for
representation where it can take values from –n to n without
repetition of absolute value of integer. Here πi represents the
element at position i in π. πT represents the identity
permutation (1. . n).

A reversal ρ on an interval [i,j] of a permutation π where 1
≤ i ≤ j ≤ n, is defined as ρ = {|πi|, |πi+1|, . . . , |πj−1|, |πj |} ,in
sorted order. The reversal operation is denoted by π ◦ ρ where
it reverses the order and flips the signs of the elements of ρ.
The operation is represented as:

π ◦ ρ = (π1 π2… πi−1 −πj −πj−1…−πi+1 −πi πj+1 … πn−1 πn)

For example π={1 4 -3 2 -5}, ρ={2,3,4} then π ◦ ρ={1 -2 3 -4
-5}.

A sequence or i−sequence of reversals is represented as
ρ1ρ2...ρi is valid sequence for a permutation π, then π ◦
ρ1,ρ2,...ρi denotes the successive application of the reversals
ρ1, ρ2,... ρi in the order in which they appear. An i−sequence
of reversals ρ1ρ2...ρi sorts a permutation π into a permutation
π′ if π ◦ ρ1ρ2...ρi = π′.

The length of the shortest sequence of reversals that sorts a
permutation π into πT is called the reversal distance and is
denoted by d(π) which is calculated from the breakpoint
graph[14].

An optimal i-sequence is represented as s = ρ1ρ2...ρi (a
valid i-sequence of reversals for π), if d(π ◦ s) = d(π)-i. s is
called an optimal sorting sequence for π and πT when i = d(π).
For example s = {1}{2}{1,2,3} is an optimal 3 sequence for
π={-3 2 1 -4}.

Siepel gave an algorithm [5] to list all optimal 1-sequences
in O(n3) called All Sorting Reversals. Using his algorithm
those reversals are computed that will bring the given
permutation one step closer to the target. All such 1-
sequences are listed. Then each of them are applied to the

original permutation to form the new set permutations and
each of those permutations have reversal distance d(π)-1.
Now new set of reversals are computed for each permutation.
This 1-sequence when combined with the predecessor ρ
optimal 2-sequence are generated. In this way the algorithm is
repeated till d(π)-sequences are generated reducing the
distance to zero and each of them sort permutation π to πT. For
example {1}{2}{1,2,3}{4} is one such solution that sorts
π=(-3 2 1 -4) to πT=(1 2 3 4).

The solutions generated are huge in number and keeps on
increasing as the size of permutation and the reversal distance
increases. For example the permutation (−4 −11 6 −9 −2 1
−8 3 −10 7 −5) has 6345019 solutions. Though all the
solutions could be easily obtained by Siepel’s algorithm but it
requires lot of time as well as memory to compute and store
them.

 The concept of traces was given by Bergeron et al. by
grouping the similar sequences into equivalence class and
representing them using normal form of traces. Two
sequences are said to be equivalent if one can be obtained
from another by sequence of commutations of non-
overlapping reversals. For example, the sequences of
reversals (words) {2} { 2, 3 ,4} { 3, 4, 5} and { 2, 3, 4} {2}
{3, 4, 5} are equivalent because the reversals {2} and {2, 3
,4} commute. As opposed to it none of these sequences of
reversals are equivalent to {2} {3, 4, 5} {2, 3, 4} because the
reversals {2,3,4} and {3,4,5} overlap.

An equivalence class of optimal sequences of reversals
under this equivalence relation is called trace. For any trace
there is a unique representation called the normal form. This
is done by finding out the commuting pairs, these are the non-
overlapping pairs or one set completely contained in another,
their positions can be interchanged and belong to same
equivalence class these when arranged in lexicographic order
forms 1 sub-word of the normal form of trace. The other
overlapping pairs are considered as another sub-word. All
such sub-words are found out, these sub-words when
arranged in lexicographic order forms the normal form of
trace representing the equivalence class. For example for the
permutation π={1 4 -3 2 -5} there are two normal form traces
possible {2}{2,3,4}{4}{5} and {2,3,5}{3} > {2,4,5} >
{3,4,5}. In first trace all {2}, {2,3,4}, {4} and {5} are
commuting so position of any of them could be interchanged
to give 24 different solutions. In the second trace
{2,3,5},{2,4,5} and {3,4,5} overlap with each other resulting
in three sub-words. Only reversal {3} commutes with all
other reversals, so by interchanging {3} with others we get 4

An Improved Algorithm for Reducing the Solution Space of Sorting by Reversals

International Journal of Basic and Applied Biology
Print ISSN: 2349 – 5820; Online ISSN: 2349 – 5839; Volume 2, Number 2; November, 2014

25

solutions for this trace. In short total 28 solutions are
represented just by two traces greatly reducing the solution
set.

Braga et al. combined the algorithm of Siepel and with the
concept of traces [10]. By using the normal form
representation, it is capable of enumerating the set of all
traces that represents all possible solutions.

2.2. Biological Constraints

While dealing with the Sorting by Reversal problem the
solution set keeps on increasing as the size of the permutation
or reversal distance increases. These large solution sets are
difficult to be handled and have to be logically reduced to be
of any practical importance. So various biological constraints
could be applied on the reversals to logically limit the
reversals that are practically not possible or whose probability
of occurrence is very less. Common Interval is one such
phenomenon in which the clusters of co-localised genes
between the two genomes are listed. This common interval is
said to have been inherited from the common ancestor and the
chances of occurrence of sequence that breaks this block is
very less. So we could discard solutions having such
reversals, resulting into a much reduced solution set and
biologically more feasible.

A pair interval ([xπ ,yπ], [xπT ,yπT]) is called a common
interval between the permutation π and πT if it satisfies the
following condition:

{ πi | i ∈[xπ ,yπ]} = { πTi | i ∈[xπT ,yπT]}
If ith element of a permutation π is j i.e. πi = j then π-1j = i
means that element j is present at ith index of π. IππT is denoted
as πT

-1 π (i.e. IππT(i)= πT
-1(π(i)). So IππT(i)=j means ith element

of π is located at jth position of πT.

For interval [x,y] of π:

l(x, y) = min IππT(i) where i ∈[x ,y]

u(x,y) = max IππT(i) where i ∈[x,y]

f(x, y) = u(x , y) – l(x , y) – (y – x)
When f(x , y) = 0 then ([xπ ,yπ], [xπT ,yπT]) represents the
common interval. An efficient algorithm to enumerate all
common intervals between two permutations has been
proposed in [16].

For example the set of common interval between the
permutations π = {-7 4 5 6 -3 8 -2 -1} and πT = {1...8} are
I={{1,2},{2..8},{3…6},{3…8},{4,5},{4…7} {5,6}}

2.3. Filter Process

The filter process is done as soon as the 1-sequences are
generated. Each of the reversals is checked if they break the
common interval or not. A common interval breaks when one
end of reversal lie inside the interval and other end outside the
interval and the interval is not completely contained within
the reversal, such that after performing the reversal the
elements of the common interval are not contiguous. Those
reversals that break the interval are not added to the set of 1-
sequences. This filtration process is done at each step of the
algorithm as soon as the 1-sequences are generated. So the
process keeps on reducing the solution set generating the
solutions that define most probable evolutionary scenario.

Let θ represent one of the intervals amongst the set of
common intervals. A reversal ρ breaks an interval θ if ρ
overlaps with θ and θ is not completely contained in ρ.
Considering, for instance, the permutation (−5 −2 −7 4 −8 3 6
−1) having θ = {2,…,8} we observe that the reversal ρ = {1,
3, 4, 6, 7, 8} breaks the interval.

The detection of common intervals is done at the
beginning of the analysis. An optimal sequence of reversals
sorting a permutation π into πT that does not break any
common interval initially detected between π and πT is called
a perfect sorting sequence.

3. PROPOSED WORK

In order to generate (i+1)-trace it is not necessary to
calculate all i-trace [12]. From here the concept of depth first
approach came into existence, when the tree was processed in
depth first manner instead of breadth first manner, this
improved the memory usage.

We are using tree structure to store the 1-sequenes where
each node is composed of its elements containing a reversal ρ
and the number of solutions generated following the reversals
in the path from the root node to the current node represented
as c. All the 1-sequences are generated and they are checked
for common interval preserving property so that those which
do not preserve the property are filtered. We store all these
filtered sequences in lexicographic manner in the root node of
the tree and c for each element is initialized as 0. Now take
the first reversal apply it on the given permutation π and
obtain new permutation π′ again compute 1-sequences for it
filter it and store them in lexicographic order in the next node.
Similarly take the first reversal from it and process repeat this
till the height of the tree becomes equal to d(π) then take all
the 1-sequence in the given order and it’s the new trace.

Beethika Tripathi, Amritanjali

International Journal of Basic and Applied Biology
Print ISSN: 2349 – 5820; Online ISSN: 2349 – 5839; Volume 2, Number 2; November, 2014

26

While storing the 1-sequence in the node of the tree it
should be done in the manner that it preserves the normal
form order with respect to the sub-trace generated so for, this
is done to ensure that the first trace generated is in normal
form. Once the branch is explored perform backtracking to
explore the new branch. Repeat this till all the branches have
been explored.

The routine TRACE_GENERATION initializes the root

node with the filtered 1-sequences in the lexicographic order.
It then calls the recursive procedure EXPAND to explore the
path originating from here and returns the number of possible
solutions it could have with that particular element as the first
element of the trace. Adding them gives the size of the
solution set.

A sequence is appended to the predecessor sequence in a

particular order i.e. first all the commuting reversals gets
arranged in lexicographic order then the non-commuting
reversals in lexicographic order. Therefore while appending
the 1-sequence to the predecessor sequence if it gets
appended at the end then it might lead to a new trace so we
could expand further otherwise if it gets appended somewhere
in the middle it means that the sequence had already been
processed and no need to expand further. In the latter case
just determine the number of solution it could have by
following the path that has been processed.

Since many of the reversals are redundant so identifying
them at an earlier stage and terminating the path there reduces
the amount of computation and memory consumption. After
exploring each branch, the normal form of the trace found
along with the count of each element is stored separately and
the memory is freed before exploring next branch.

As in Figure 3 which represents the tree structure for the

permutation {-3 2 1 -4}. In this representation, the values in
plain text are reversals. The values in italics are reversals
which are optimal 1-sequences but, when combined with
predecessor trace, lead to traces that were
inserted in another branch of the tree, which means they are
redundant. The broader edge represents the trace
{1}{1,2,3}{2}{4} that sort the permutation.

4. DISCUSSIONS

We reduced the universe of sequences and class by
applying the biological constraints and filtering those
sequences which are biologically less probable to occur. This
could help the biologists to work on large permutations or
permutations with large reversal distance, and a better
evolutionary scenario is characterized for the two genomes.
The solution space is explored in depth first manner to list the

Figure 3. Tree structure of the traces that sort the

permutation (−3 2 1 −4).

1. Generate all the 1-sequence of reversals
preserving the CI and store in lexicographic
order in root node.

2. For each reversal
a) Find the number of solutions generated by

the reversal by calling recursive procedure
EXPAND.

b) Add the number of solutions of each
element to get the total number of solutions.

Figure 1. TRACE_GENERATION procedure.

1. Apply reversal on given genome to get new
genome sequence.

2. If level is equal to d(π) print the trace and
return number of solutions as 1.

3. Generate next 1-sequence of reversals
preserving the CI and store in normal form
order with respect to the predecessor sequence
in new node at next level.

4. For each 1-sequence in node
a) If appending 1-sequence to the predecessor

sequence leads to a new trace then call
EXPAND to find number of solutions
otherwise find the number of solution from
the traces generated so far.

b) Add number of solutions to total number of
solutions for the node.

5. Return total number of solutions.

Figure 2. EXPAND procedure.

An Improved Algorithm for Reducing the Solution Space of Sorting by Reversals

International Journal of Basic and Applied Biology
Print ISSN: 2349 – 5820; Online ISSN: 2349 – 5839; Volume 2, Number 2; November, 2014

27

normal form of possible traces while providing the count of
the total number of solutions in the solution space.

This version could further be extended to form a parallel
version of the algorithm. Data Parallelism can be employed
where each branch is handled by a different processor and all
the processors are doing the same work. Each branch is
explored separately by different processors independently
starting from each reversal in the optimal 1-sequences of
reversals of the input permutation. This results in better time
and space complexity.

Other different types of constraints could be applied
depending upon the type of application. The concept of near-
perfect trace could be used which allows bounded number of
breaks per trace. This is done no perfect sorting sequence
exist so a near-perfect sorting sequence is generated.

The use of biological constraints has some important
limitations. First, there is no guarantee that a sequence that
respects the given constraints exists, thus this approach may
lead to empty results, which is undesirable. Relaxing the
biological constraints in order to obtain a non-empty result is
generally possible, but this approach may require some work
for relaxing the parameters, which costs computation time.

5. REFERENCES

[1] McLysaght, A., Seoighe, C. and Wolfe K. H.: “High frequ-ency
of inversions during eukaryote gene order evolution”, in:
Comparative Genomics: Empirical and Analytical Approaches
to Gene Order Dynamics, Map Alignment and the Evolution of
Gene Families, D. Sankoff and J. H. Nadeau (Eds.), 2000, pp.
47–55.

[2] Caprara, A.: "Sorting by reversals is difficult", in: Proc. 1st
Ann. Int’l Conf. Comput. Mol. Biol. (RECOMB 1997), ACM
Press, New York (1997), pp. 75–83.

[3] Hannenhalli, S., Pevzner, P.A.: "Transforming cabbage into
turnip (polynomial algorithm for sorting signed permutations
by reversals)", in: Proc. 27th Ann. ACM Symp. Theory of
Comput. (STOC 1995), ACM Press, New York (1995), pp.
178–189.

[4] Tannier, E., Bergeron, A., Sagot, M.-F.: "Advances on sorting
by reversals.", Disc. Appl. Math. (2007), 155(6-7), pp. 881–
888.

[5] Ajana, Y., Lefebvre, J.-F., Tillier, E.R.M., El-Mabrouk, N.:
"Exploring the set of all minimal sequences of reversals - an
application to test the replication-directed reversal hypothesis.",
in: Guig´o, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452,
Springer, Heidelberg (2002), pp. 300–315.

[6] Siepel, A.C.: "An algorithm to find all sorting reversals.", in:
Proc. 6th Ann. Int’l Conf. Comput. Mol. Biol. (RECOMB 2002),
ACM Press, New York (2002), pp. 281–290.

[7] Swenson, K.M., Badr, G., Sankoff, D.: "Listing all sorting
reversals in quadratic time.", in: Singh, M. (ed.) WABI 2010.
LNCS, vol. 6293, Springer, Heidelberg (2010), pp. 102–110.

[8] Bergeron, A., Chauve, C., Hartman, T., Saint-Onge, K.: "On
the properties of sequences of reversals that sort a signed
permutation.", in: JOBIM,(June 2002), pp. 99–108

[9] Diekert, V., Rozenberg, G.: "The Book of Traces",. World
Scientific, Singapore (1995)

[10] Braga, M.D.V.: Baobabluna: "The solution space of sorting by
reversals.", Bioinformatics 25(14) (2009).

[11] Braga, M.D.V., Sagot, M., Scornavacca, C., Tannier, E.: "The
solution space of sorting by reversals", in: M˘andoiu, I.I.,
Zelikovsky, A. (eds.) ISBRA 2007. LNCS (LNBI), vol. 4463,
Springer, Heidelberg (2007), pp. 293–304.

[12] Baudet, C., Dias, Z.: "An improved algorithm to enumerate all
traces that sort a signed permutation by reversals", in: Proc. The
2010 ACM Symposium on Applied Computing, 2010, pp. 1521–
1525

[13] Amritanjali , G. Sahoo: "Exploring the Solution Space of
Sorting By Reversals: A New Approach", in: International
Journal of Information Technology, Issue. 2, Vol.3 (June 2013),
pp. 98–104.

[14] Bergeron A., “A very elementary presentation of the
Hannenhalli-Pevzner theory”, Discrete Applied Mathematics,
vol. 146, 2005, pp. 134–145.

[15] Braga, M.D.V., Gautier, C., Sagot, M.: "An asymmetric
approach to preserve common intervals while sorting by
reversals", Algorithms for Molecular Biology 4(16), (2009).

[16] T. Uno, M. Yagiura,: "Fast algorithms to enumerate All
Common Intervals of two Permutations", Algorithmica 26(2),
2000, pp. 290-309.

