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Abstract: The goal of this paper is to give an efficient algorithm 
for sorting the genome with respect to other genome using 
reversal operation and to generate the optimum traces. Usually 
the number of solutions is large so solution space can be 
represented in compact manner by grouping equivalent 
solutions into traces. To reduce the memory requirement depth 
first approach is employed. Still there are some traces having 
reversals that are biologically not possible so it is of no use to 
further study them so such traces are discarded by applying 
some biological constraints at each step of the process for 
generating traces. This approach not only reduces memory and 
time consumption but also makes it easier to parallelize and a 
better evolutionary scenario of genomes is characterized. This 
allows us to efficiently handle large permutations so that the 
exploration time is visibly reduced. 

1. INTRODUCTION 

Genetic rearrangement over a period of time leads to 
evolution.  Reversal is one of the most commonly observed 
evolutionary events [1]. In this a segment of a chromosome 
gets flipped, thereby reversing the order and orientation of the 
genes in that segment. By comparing the shared gene order in 
two genomes that have evolved by reversals events, their 
evolutionary scenario is reconstructed. 

Sorting by reversals is defined as the problem of finding 
the minimal sequence of reversals that can transform the 
shared gene order of one of the given genome into that of 
another.  Till now lots of study has been done on finding the 
reversal distance (minimum number of reversals) between 
two given genomes and generating corresponding sequence of 
reversals.  

Genomes are represented as permutations where duplicate 
genes are not allowed. When the permutation is unsigned the 
sorting by reversal problem is NP-hard [2]. In 1995 
Hannenhalli and Pevzner [3] for the first time gave a proof of 
solving it in polynomial time for the signed versions of the 
problem. Since then, many solutions were given with speed 

and memory utilization improvements. Later Siepel and 
Ajana et al. [5-6] proposed an algorithm that listed all sorting 
reversals (ASR) in O(n3) time complexity. By repetitively 
applying their algorithms, Siepel generated All Sorting 
Sequences by Reversals (ASSR) that transforms one genome 
into another. Later an improved version of their algorithm 
was given whose average-case complexity is O(n2) [7]. 
Bergeron et al. [8] grouped those sequences into equivalence 
classes and gave the concept of traces [9] to represent them 
into normal form thereby reducing the solution set. However, 
no algorithm was given. Braga et al. [10-11], developed an 
algorithm by combining the results of Siepel and of Bergeron 
et al. that enumerates the normal form of every trace and 
provides the count of the number of sorting sequences. 
Baudet et al. [12] used the approach of exploring the solution 
space in depth first manner using stack and listed normal 
forms of traces to represent classes of sorting sequences this 
drastically reduced the memory usage. But their algorithm 
could not find the total number of solutions. So Amritanjali 
and Sahoo [13] proposed a modified approach to count the 
total number of possible solutions while generating the traces 
are generated in depth first manner. 

However, for most of the genomes there can several 
sequences and the solution space increases exponentially with 
reversal distance and number of shared genes. Each sequence 
describes a probable to actual scenario can be deduced by 
applying some biological constraints. Very large number of 
possible sequences makes their analysis difficult and listing 
them requires lots of memory and time.  Application of 
biological constraints like common intervals [15] can help to 
discard reversals that are less probable, reducing the solution 
space. In the proposed algorithm, we are applying this 
constraint to generate solutions that are preserving the 
conserved segments. Also, the solutions are generated in 
depth first manner and they are grouped into equivalence 
classes for compact representation. Reduction of solution 
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space not only decreases computation time but also makes 
their analysis easier. Moreover, depth first approach requires 
less memory and is easier to parallelize.     

2. BACKGROUND  

2.1. Basics 

Unichromosomal genomes without duplication of genes 
are considered in our study. Genomes are represented by the 
list of homologous markers (usually genes or blocks of 
contiguous genes) between them. Signed integers are used to 
represent the markers where sign denotes the orientation of 
markers on one genome with respect to the other genome. 
The signed permutation π = (π1 . . πn) of size n is used for 
representation where it can take values from –n to n without 
repetition of absolute value of integer. Here πi represents the 
element at position i in π. πT represents the identity 
permutation (1. . n). 

A reversal ρ on an interval [i,j] of a permutation π where 1 
≤ i ≤ j ≤ n, is defined as ρ = {|πi|, |πi+1|, . . . , |πj−1|, |πj |} ,in 
sorted order. The reversal operation is denoted by π ◦ ρ where 
it reverses the order and flips the signs of the elements of ρ. 
The operation is represented as: 

π ◦ ρ = (π1 π2… πi−1 −πj −πj−1…−πi+1 −πi πj+1 … πn−1 πn)  

For example π={1 4 -3 2 -5}, ρ={2,3,4} then π ◦ ρ={1 -2 3 -4 
-5}. 

A sequence or i−sequence of reversals is represented as 
ρ1ρ2...ρi is valid sequence for a permutation π, then π ◦ 
ρ1,ρ2,...ρi denotes the successive application of the reversals 
ρ1, ρ2,... ρi in the order in which they appear. An i−sequence 
of reversals ρ1ρ2...ρi sorts a permutation π into a permutation 
π′ if π ◦ ρ1ρ2...ρi = π′. 

The length of the shortest sequence of reversals that sorts a 
permutation π into πT is called the reversal distance and is 
denoted by d(π) which is calculated from the breakpoint 
graph[14].  

An optimal i-sequence is represented as s = ρ1ρ2...ρi (a 
valid i-sequence of reversals for π), if d(π ◦ s) = d(π)-i. s is 
called an optimal sorting sequence for π and πT when i = d(π). 
For example s = {1}{2}{1,2,3} is an optimal 3 sequence for 
π={-3 2 1 -4}. 

Siepel gave an algorithm [5] to list all optimal 1-sequences 
in O(n3) called All Sorting Reversals. Using his algorithm 
those reversals are computed that will bring the given 
permutation one step closer to the target. All such 1-
sequences are listed. Then each of them are applied to the 

original permutation to form the new set permutations and 
each of those permutations have reversal distance d(π)-1. 
Now new set of reversals are computed for each permutation. 
This 1-sequence when combined with the predecessor ρ 
optimal 2-sequence are generated. In this way the algorithm is 
repeated till d(π)-sequences are generated  reducing the 
distance to zero and each of them sort permutation π to πT. For 
example {1}{2}{1,2,3}{4} is one such solution that sorts 
π=(-3 2 1 -4) to πT=(1 2 3 4).  

The solutions generated are huge in number and keeps on 
increasing as the size of permutation and the reversal distance 
increases. For example the permutation (−4 −11 6 −9 −2  1 
−8  3 −10  7 −5) has 6345019 solutions. Though all the 
solutions could be easily obtained by Siepel’s algorithm but it 
requires lot of time as well as memory to compute and store 
them.  

 The concept of traces was given by Bergeron et al. by 
grouping the similar sequences into equivalence class and 
representing them using normal form of traces. Two 
sequences are said to be equivalent if one can be obtained 
from another by sequence of commutations of non-
overlapping reversals. For example, the sequences of 
reversals (words) {2} { 2, 3 ,4} { 3, 4, 5} and { 2, 3, 4} {2} 
{3, 4, 5} are equivalent because the reversals {2} and {2, 3 
,4} commute. As opposed to it none of these sequences of 
reversals are equivalent to {2} {3, 4, 5} {2, 3, 4} because the 
reversals {2,3,4} and {3,4,5} overlap. 

An equivalence class of optimal sequences of reversals 
under this equivalence relation is called trace. For any trace 
there is a unique representation called the normal form. This 
is done by finding out the commuting pairs, these are the non-
overlapping pairs or one set completely contained in another, 
their positions can be interchanged and belong to same 
equivalence class these when arranged in lexicographic order 
forms 1 sub-word of the normal form of trace. The other 
overlapping pairs are considered as another sub-word. All 
such sub-words are found out, these sub-words when 
arranged in lexicographic order forms the normal form of 
trace representing the equivalence class. For example for the 
permutation π={1 4 -3 2 -5} there are two normal  form traces 
possible {2}{2,3,4}{4}{5} and {2,3,5}{3} > {2,4,5} > 
{3,4,5}. In first trace all {2}, {2,3,4}, {4} and {5} are 
commuting so position of any of them could be interchanged 
to give 24 different solutions.  In the second trace 
{2,3,5},{2,4,5} and {3,4,5} overlap with each other resulting 
in three sub-words. Only reversal {3} commutes with all 
other reversals, so by interchanging {3} with others we get 4 
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solutions for this trace. In short total 28 solutions are 
represented just by two traces greatly reducing the solution 
set. 

Braga et al. combined the algorithm of Siepel and with the 
concept of traces [10]. By using the normal form 
representation, it is capable of enumerating the set of all 
traces that represents all possible solutions. 

2.2. Biological Constraints 

While dealing with the Sorting by Reversal problem the 
solution set keeps on increasing as the size of the permutation 
or reversal distance increases. These large solution sets are 
difficult to be handled and have to be logically reduced to be 
of any practical importance. So various biological constraints 
could be applied on the reversals to logically limit the 
reversals that are practically not possible or whose probability 
of occurrence is very less. Common Interval is one such 
phenomenon in which the clusters of co-localised genes 
between the two genomes are listed. This common interval is 
said to have been inherited from the common ancestor and the 
chances of occurrence of sequence that breaks this block is 
very less. So we could discard solutions having such 
reversals, resulting into a much reduced solution set and 
biologically more feasible. 

A pair interval ([xπ ,yπ], [xπT ,yπT]) is called a common 
interval between the permutation  π and πT if it satisfies the 
following condition: 

{ πi | i ∈[xπ ,yπ]} = { πTi | i ∈[xπT ,yπT]} 
If ith element of a permutation π is j i.e. πi = j then π-1j = i 
means that element j is present at ith index of π. IππT is denoted 
as πT

-1 π (i.e. IππT(i)= πT
-1( π(i)). So IππT(i)=j means   ith  element 

of π is located at jth position of πT. 

For interval [x,y] of π: 

l(x, y) = min IππT(i) where i ∈[x ,y] 

u(x,y) = max IππT(i) where i ∈[x,y] 

f(x, y) = u( x , y ) – l( x , y ) – (y – x) 
When f( x , y ) = 0 then ([xπ ,yπ], [xπT ,yπT])  represents the 
common interval. An efficient algorithm to enumerate all 
common intervals between two permutations has been 
proposed in [16].  

For example the set of common interval between the 
permutations π = {-7 4 5 6 -3 8 -2 -1} and πT = {1...8} are 
I={{1,2},{2..8},{3…6},{3…8},{4,5},{4…7} {5,6}} 

 
 

2.3. Filter Process 

The filter process is done as soon as the 1-sequences are 
generated. Each of the reversals is checked if they break the 
common interval or not. A common interval breaks when one 
end of reversal lie inside the interval and other end outside the 
interval and the interval is not completely contained within 
the reversal, such that after performing the reversal the 
elements of the common interval are not contiguous. Those 
reversals that break the interval are not added to the set of 1-
sequences. This filtration process is done at each step of the 
algorithm as soon as the 1-sequences are generated. So the 
process keeps on reducing the solution set generating the 
solutions that define most probable evolutionary scenario. 

Let θ represent one of the intervals amongst the set of 
common intervals. A reversal ρ breaks an interval θ if ρ 
overlaps with θ and θ is not completely contained in ρ. 
Considering, for instance, the permutation (−5 −2 −7 4 −8 3 6 
−1) having θ = {2,…,8} we observe that the reversal ρ = {1, 
3, 4, 6, 7, 8} breaks the interval. 

The detection of common intervals is done at the 
beginning of the analysis. An optimal sequence of reversals 
sorting a permutation π into πT that does not break any 
common interval initially detected between π and πT is called 
a perfect sorting sequence. 

3. PROPOSED WORK 

In order to generate (i+1)-trace it is not necessary to 
calculate all i-trace [12]. From here the concept of depth first 
approach came into existence, when the tree was processed in 
depth first manner instead of breadth first manner, this 
improved the memory usage.  

We are using tree structure to store the 1-sequenes where 
each node is composed of its elements containing a reversal ρ 
and the number of solutions generated following the reversals 
in the path from the root node to the current node represented 
as c. All the 1-sequences are generated and they are checked 
for common interval preserving property so that those which 
do not preserve the property are filtered. We store all these 
filtered sequences in lexicographic manner in the root node of 
the tree and c for each element is initialized as 0. Now take 
the first reversal apply it on the given permutation π and 
obtain new permutation π′ again compute 1-sequences for it 
filter it and store them in lexicographic order in the next node. 
Similarly take the first reversal from it and process repeat this 
till the height of the tree becomes equal to d(π) then take all 
the 1-sequence in the given order and it’s the new trace.  
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While storing the 1-sequence in the node of the tree it 
should be done in the manner that it preserves the normal 
form order with respect to the sub-trace generated so for, this 
is done to ensure that the first trace generated is in normal 
form. Once the branch is explored perform backtracking to 
explore the new branch. Repeat this till all the branches have 
been explored. 

 
 
The routine TRACE_GENERATION initializes the root 

node with the filtered 1-sequences in the lexicographic order. 
It then calls the recursive procedure EXPAND to explore the 
path originating from here and returns the number of possible 
solutions it could have with that particular element as the first 
element of the trace. Adding them gives the size of the 
solution set. 

 

 

 
A sequence is appended to the predecessor sequence in a 

particular order i.e. first all the commuting reversals gets 
arranged in lexicographic order then the non-commuting 
reversals in lexicographic order. Therefore while appending 
the 1-sequence to the predecessor sequence if it gets 
appended at the end then it might lead to a new trace so we 
could expand further otherwise if it gets appended somewhere 
in the middle it means that the sequence had already been 
processed and no need to expand further. In the latter case 
just determine the number of solution it could have by 
following the path that has been processed. 

Since many of the reversals are redundant so identifying 
them at an earlier stage and terminating the path there reduces 
the amount of computation and memory consumption. After 
exploring each branch, the normal form of the trace found 
along with the count of each element is stored separately and 
the memory is freed before exploring next branch. 

 
As in Figure 3 which represents the tree structure for the 

permutation {-3 2 1 -4}. In this representation, the values in 
plain text are reversals. The values in italics are reversals 
which are optimal 1-sequences but, when combined with 
predecessor trace, lead to traces that were  
inserted in another branch of the tree, which means they are 
redundant. The broader edge represents the trace 
{1}{1,2,3}{2}{4} that sort the permutation. 

4. DISCUSSIONS  

We reduced the universe of sequences and class by 
applying the biological constraints and filtering those 
sequences which are biologically less probable to occur. This 
could help the biologists to work on large permutations or 
permutations with large reversal distance, and a better 
evolutionary scenario is characterized for the two genomes. 
The solution space is explored in depth first manner to list the 

 
 
Figure 3. Tree structure of the traces that sort the 

permutation ( −3 2 1 −4 ). 

 

1. Generate all the 1-sequence of reversals 
preserving the CI and store in lexicographic 
order in root node. 

2. For each reversal 
a) Find the number of solutions generated by 

the reversal by calling recursive procedure 
EXPAND. 

b) Add the number of solutions of each 
element to get the total number of solutions. 

Figure 1.  TRACE_GENERATION procedure.   

1. Apply reversal on given genome to get new 
genome sequence. 

2. If level is equal to d(π) print the trace and 
return number of solutions as 1. 

3. Generate next 1-sequence of reversals 
preserving the CI and store in normal form 
order with respect to the predecessor sequence 
in new node at next level. 

4. For each 1-sequence in node 
a) If appending 1-sequence to the predecessor 

sequence leads to a new trace then call 
EXPAND to find number of solutions 
otherwise find the number of solution from 
the traces generated so far. 

b) Add number of solutions to total number of 
solutions for the node. 

5. Return total number of solutions. 

Figure 2.  EXPAND procedure. 
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normal form of possible traces while providing the count of 
the total number of solutions in the solution space.  

This version could further be extended to form a parallel 
version of the algorithm. Data Parallelism can be employed 
where each branch is handled by a different processor and all 
the processors are doing the same work. Each branch is 
explored separately by different processors independently 
starting from each reversal in the optimal 1-sequences of 
reversals of the input permutation. This results in better time 
and space complexity. 

Other different types of constraints could be applied 
depending upon the type of application. The concept of near-
perfect trace could be used which allows bounded number of 
breaks per trace. This is done no perfect sorting sequence 
exist so a near-perfect sorting sequence is generated.  

The use of biological constraints has some important 
limitations. First, there is no guarantee that a sequence that 
respects the given constraints exists, thus this approach may 
lead to empty results, which is undesirable. Relaxing the 
biological constraints in order to obtain a non-empty result is 
generally possible, but this approach may require some work 
for relaxing the parameters, which costs computation time. 
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