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Abstract : Reversals and translocations are most common 
rearrangement operations in the evolution of multichromosomal 
genomes. Using parsimony hypothesis it is possible to deduce the 
sequence of rearrangements that accompanied the evolution of 
genomes. The problem of finding the optimal sequence of 
reversals and translocations transforming the gene order of one 
genome into other is called the problem of sorting by reversals 
and translocations (SBRT). The SBRT problem was initially 
solved by a reduction to the problem of sorting by reversals, 
where each reversal simulates either a reciprocal translocation 
or an internal reversal. Later algorithms were proposed that 
treat reversals and translocations as distinct operations.  All the 
existing algorithms for the SBRT problem provide only a single 
optimal sequence of reversals and translocations. Recently an 
attempt was made to list all optimal sorting sequences for the 
SBRT problem that works with limited permutations.  In this 
paper we extend the approach and present a method to 
completely enumerate the solution space of the SBRT problem. 
Each solution presents a probable evolutionary scenario of the 
given genomes. The true evolutionary scenario will be 
represented by one of the given set of solutions. 

1. INTRODUCTION 

The appearance of gene content and gene order data has 
greatly facilitated in carrying out phylogenetic analysis. The 
evolutionary distance between two species is estimated by the 
amount of differences between the order and orientation of 
the shared genes on their chromosomes. During evolution, 
genomes are subject to rearrangements, which are large scale 
mutations that can change not only the ordering and 
orientation (strandedness) of the genes on the chromosomes 
but also the chromosomes on which genes are present.  
Compared to point mutations, these events are very rare so 
they are more useful in deducing the evolutionary 
relationships. 

      One is interested in finding the most “plausible” sequence 
of rearrangements that resulted in the divergence of two 
genomes from their common ancestor. It describes their 

evolutionary scenario. From parsimony hypothesis the most 
plausible scenario is the one that involves minimum number 
of rearrangements as they are very rare events. Therefore, for 
given two genomes, one wants to find an optimal (minimal) 
sequence of rearrangements that transforms the gene order of 
the shared genes in one genome into that of the other. In the 
classical approach, each genome has exactly one copy of each 
gene, and only operations that do not change the genome 
content are considered. The minimum number of 
rearrangements required is known as the rearrangement 
distance between the two genomes. 

      The most common rearrangements events in 
multichromosomal genomes are reversals and translocations. 
They are balanced genome rearrangement operations, so the 
number of chromosomes and number of genes remains 
unchanged after these events. A reversal operation reverses 
the order and the orientation of the genes in a segment inside 
a chromosome. In a translocation operation the ends of two 
chromosomes gets exchanged. The problem of finding the 
optimal sequence of reversals and translocations transforming 
the gene order of one genome into other is called the problem 
of sorting by reversals and translocations (SBRT).  

The area of sorting multichromosomal genomes has been 
subject of lot of research. The problem is solved by 
representing the relative order and orientation of the shared 
genes in the two genomes by signed permutations and 
constructing a graph that give information about the adjacent 
genes in each of the permutation. The SBRT problem was 
initially solved by a reduction to the problem of sorting by 
reversals, where each reversal simulates either a translocation 
or a reversal [1-4]. Recently, the algorithm proposed in [5] 
treats reversals and translocations as distinct operations. All 
these algorithms provide only a single optimal sequence of 
reversals and translocations. As there are multiple solutions to 
the sorting by reversals problem [6-8] and to the sorting by 
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translocations problem [9], so there can be multiple solutions 
to the SBRT problem too. An attempt was made to list all 
optimal sorting sequences for the SBRT problem by [10] that 
works with limited permutations. In this paper we extend the 
approach to remove its limitations while completely 
enumerating all possible parsimonious sequences for given 
two genomes. 

2. PROBLEM FORMULATION 

The evolutionary scenario of given pair of genomes is 
described by the sequence of rearrangements that can 
transform the shared gene order of one genome into that of 
the other in minimal number of steps. To determine this one 
of the genome is taken as source and the other one as target. 
The shared gene order in the target genome is marked in 
ascending order and is represented by an identity permutation. 
The relative order and orientation of these genes in the source 
genome is denoted by a signed permutation, where '-' sign 
indicates opposite orientation. As the genomes are 
multichromosomal so the shared genes are distributed over 
multiple chromosomes. The rearrangement operations are 
performed on the source genome permutation such that it is 
transformed into the target genome permutation in minimum 
number of steps. Each rearrangement operation cuts the 
source genome at two different positions, referred as cut 
points. For reversals, the two cut points will be on the same 
chromosome. And, for translocation the cut points are taken 
on two different chromosomes. Here we have considered 
internal reversals and reciprocal translocations. A reversal is 
internal if it does not involve ends of the chromosomes. A 
translocation is reciprocal if none of the exchanged ends is 
empty. If the head of a chromosome (chromosomal segment 
before the cut point) is exchanged with the tail (chromosomal 
segment after the cut point) of another chromosome then it is 
called prefix-suffix translocation otherwise if tails of both the 
chromosomes are exchanged then it is called prefix-prefix 
translocation.   

The rearrangement distance and the possible cut points for 
sorting rearrangements are determined with the help of the 
graph proposed by [1]. Each gene is represented by two 
vertices such that the signed permutation for the source 
genome is transformed into unsigned permutation, while 
preserving the orientation information for each gene. For 
positive sign gene +xi, the ordered pair is (xi

h
, xi

t) and for 
negative signed gene –xi, the ordered pair is (xi

t
, xi

h). Vertices 
in the graph are the set of ordered pairs corresponding to each 
gene in the genome. They are displayed linearly according to 
the order of genes in the chromosomes. The adjacencies in the 

source and target permutations are shown with the help of bi-
colored edges. Black edges connect adjacent genes in the 
chromosomes of the source genome. Gray edges connect 
those genes of the source genome that are adjacent in the 
target chromosomes. If both the ends of the edge are on the 
same chromosome then it is called internal else if they are on 
different chromosomes then it is called external.  A gray edge 
can be internal or external but all the black edges are internal. 
An example graph (also known as cycle graph) is shown in 
Figure 1. 

 
Figure 1. The graph G (A, B), where source genome A = 
{(1, 3, 2, 4, -6, 7), (8, -11, 5, 9, 12), (13, 14, 10, 15)} and 

target genome B = {(1, 2, 3, 4, 5, 6, 7), (8, 9, 10, 11, 12), ( 
13, 14, 15)} distributed on 3 chromosomes X, Y and Z, 
respectively. (Arrow shows the direction of black edges 

when traversing the cycles). 

The graph consists of cycles of alternate gray and black 
edges. A cycle is trivial if it consists of only a pair of gray and 
black edges. Intersecting cycles form one component. A 
trivial component consists of a trivial cycle. A gray edge is 
said to be oriented if it connects genes with opposite 
orientation otherwise unoriented. A cycle is oriented if it 
contains one or more oriented gray edge(s) otherwise it is 
unoriented. Similarly, a component is oriented if it has one or 
more oriented cycles otherwise it is unoriented. A benign 
component refers to a trivial or an oriented component. An 
unoriented internal component is termed as knot if it does not 
separate two other unoriented components. A knot can be 
simple knot or a superknot. A superknot protects other 
unoriented internal components from becoming knots i.e. 
when a superknot is eliminated a non-knot becomes a knot.  



Enumerating All Parsimonious Sequences of Reversals and Translocations 

International Journal of Basic and Applied Biology 
Print ISSN: 2349 – 5820; Online ISSN: 2349 – 5839 ; Volume 2, Number 2; November, 2014 

9

 
Figure 2. Fortress with three superknots K1, K2 and K3. 

A fortress exist iff there are odd number of knots and all 
are superknots. If the graph has knot(s) but fortress is not 
present then either there exist one or more simple knot(s) or 
number of superknots is even. If fortress is present then there 
are at least three superknots and no simple knots. Figure 2 
shows an example of fortress with 3 superknots.  

For two genomes with 'n' shared genes distributed over N 
chromosomes, the rearrangement distance 'd' is given in [1] 
as:  d = n – N – c + k + f  where 'c' is number of cycles in the 
graph, 'k' is number of knots and 'f' is 1 if fortress is present 
otherwise 0. This gives the minimal number of 
rearrangements required to transform the source gene order 
into the target gene order which is a sorted order. Therefore, 
we have to list all possible sequences of reversals and 
translocations that sort the source gene order in 'd' steps.  Let 
∆c denote the change in the number of cycles after 
performing a rearrangement operation, then ∆c = {-1, 0, +1}. 
Based on the value of ∆c, a reversal operation can be 
classified as split (∆c = 1), neutral (∆c = 0) or joint (∆c = -1) 
[11]. Similarly, translocation operations are classified as 
proper (∆c = 1), improper (∆c = 0) or bad (∆c = -1) [12]. Any 
rearrangement operation applied on the source genome is 
valid if the rearrangement distance between the rearranged 
genome and the target reduces by 1, i.e. ∆d = ∆(k + f - c) = -1.  
An optimal (minimal) sequence consists of only valid 
rearrangements.  

3. FINDING VALID REARRANGEMENTS  

  It has been shown that several valid rearrangements can 
exist. When these rearrangements are applied over the given 
source genome sequence, a new set of resulting genome 
sequences are obtained. Again for each of these genome 
sequences next set of valid rearrangements are obtained and 
the same process is repeated. After applying d-sequence of 
valid rearrangements, the source genome is transformed into 
the target genome, as each rearrangement is reducing the 
distance by one. 

The graph of the source genome may contain internal and 
external components whereas the graph for the target genome 
contains only (internal) trivial components/cycles. To 
transform the source genome into the target genome the 
rearrangements are applied such that all the non-trivial 
components are eliminated. [1, 2, 6,11-13] describe the effect 
of applying a reversal or a translocation on the components in 
the graph.  External components are eliminated by applying 
translocation on external cycles. The internal components 
may be oriented or unoriented. Oriented internal components 
can be transformed into trivial components by applying 
reversals on oriented cycles. Unoriented internal components 
are eliminated by applying reversals on single chromosome 
and/or translocations on two chromosomes. The 
rearrangement applied at each step must be valid so that the 
transformation takes place in least number of steps. 

3.1. Rearrangements Eliminating Unoriented Internal 
Components 

The given source genome cannot be sorted until all the 
non-trivial unoriented internal components get eliminated if 
present. Both reversals and translocations can be used for 
removing these components. Siepel [6] has described in detail 
the process for finding all valid reversals that can eliminate 
unoriented components from the graph.  Neutral reversals can 
be applied by taking cut points on a pair of black edges in 
same unoriented cycle. This does not change number of 
cycles but reduces number of knots by 1.If fortress is not 
present then such a reversal is valid iff the unoriented cycle 
belongs to a simple knot and either the number of superknots 
is even or it is not the only simple knot. This ensures that 
number of knots is reduced without creating fortress. Thus, 
∆k = -1, ∆c = ∆f = 0, and ∆d = -1. If fortress is already 
present then the unoriented cycle either belongs to a 
superknot that protects a single non-knot or to the non-knot 
protected by it. In the first case a superknot is eliminated and 
the nonknot becomes a simple knot and in the second case the 
nonknot is changed into oriented component transforming the 
superknot into a simple knot. In both the cases, the fortress is 
destroyed and number of knots and cycles remains the same, 
i.e. ∆f = -1, ∆c = ∆k = 0, thereby reducing the distance.   

Also, joint reversals can be applied by taking cut points on 
black edges of two cycles in different components. The two 
components can be a pair of knots, a pair of a knot and a 
benign component separated by another knot or a pair of 
benign components separated by two distinct knots. In case 
where a pair of simple knots is merged it must be ensured that 
either the number of superknots is even or they are not the 
only simple knots in the graph. For all such reversals ∆k = -2, 
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∆c = -1 and ∆f = 0, thus ∆d = -1. If fortress is already present 
then the reversal merging the two knots is valid if it destroys 
fortress by creating another knot.  

For translocations we cannot take cut points on black edges in 
same internal cycles. So to eliminate unoriented internal 
components by translocation, we have to take cut points on 
black edges of two cycles of different components on separate 
chromosomes. Such a translocation is bad as it merges two 
cycles. Both prefix-prefix and prefix-suffix translocations can 
be done on the pair of cut points. Let 'v' be the number of 
chromosomes having knots. Following cases describe the 
possible cut points for valid bad translocations: 

Case 1: f = 1, k ≥ 3 and k is odd. 
If v=1 then the translocation is performed between a 
chromosome having knot and any other chromosome such 
that one knot is eliminated and ∆ (c – k – f) =∆ (-1 - (-1) - (-
1)). If v≥ 2 then choose any two chromosomes for performing 
bad translocation such that  

i) At least one chromosome has knot, ∆ (c – k – f) =∆ (-1 - 
(-1) - (-1)) = 1. The translocation eliminates the knot on 
the chromosome as well as fortress is destroyed as 
number of knots becomes even. 

ii) Or, both the chromosomes has knot, if k = 3, then ∆ (c – k 
– f) = ∆ (-1 - (-1) - (-1)) = 1. The translocation eliminates 
the knots on both the chromosomes but turns a non-knot 
into a knot. So, the fortress is destroyed. Otherwise, if k  
> 3, then ∆ (c – k – f) = ∆ (-1 - (-2) - 0) = 1. In this case 
the translocation eliminates two knots but the number of 
knots is still odd so fortress is not destroyed. 

Case 2: f = 0 and k  ≥ 2.  
The possible cut points for valid bad translocation are those 
that reduce number of knots by two. Therefore, a 
translocation is possible when v ≥ 2 as two chromosomes are 
required. The possible cut points for translocation are 
between any pair of chromosomes having knots. In all these 
cases ∆ (c – k – f) = ∆ (-1 - (-2) - 0) = 1. However, a pair of 
simple knots can be merged iff the number of superknots is 
even or they are not the only simple knots of the graph. 
Otherwise, it will lead to formation of fortress. 

3.2. Translocations on External Cycles 

Translocation is performed on pair of black edges on different 
chromosomes in same (external) cycle. The translocations on 
external cycles are always proper as it increases number of 
cycles by one. The cycles are traversed starting from any 
black or gray edge, marking the direction in which each black 

edge is traversed. A pair of black edges in same cycle are said 
to be converging if their direction of traversal is same 
otherwise they are diverging [14]. If the cycle is unoriented 
then all the pairs of black edges in it are converging. 
Otherwise, the cycle has at least one diverging pair of black 
edges. We take cut points for prefix-suffix translocation on 
every diverging pairs and prefix-prefix translocation on every 
converging pairs. Figure 3 shows the graph for the rearranged 
genome on applying each type of translocation. Such a 
translocation is called as proper translocation as it increases 
number of cycles by one. This is added to the solution set 
only if it reduces the distance by 1 i.e. ∆d = -1. Note that not 
all the proper translocations are valid as it may create new 
unoriented internal components due to which distance may 
not reduce. From the distance formula a proper translocation 
is valid iff ∆(k+f) = 0 as ∆c = 1. This means either it is not 
creating any new unoriented internal components or it 
satisfies following conditions: (a) If fortress is not present in 
the graph, then after applying the translocation the number of 
knots must not change.  (b) If fortress is present in the graph, 
then after applying the translocation either the number of 

 
Fig. 3. Graph after applying a prefix-suffix translocation 
on the source genome A.  

 
Fig. 3. Graph after applying a prefix-prefix 

translocation on the source genome A. 
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knots must not change or the number knots must increase by 
1. In all such cases ∆(k+f) = 0. 

3.3. Reversals on Oriented Internal Cycles 

Reversal is performed by taking cut points on every 
diverging pair of black edges in same cycle. It divides the 
cycle into two, increasing the number of cycles by 1. Such 
reversals are valid if it reduces the distance. Like 
translocations, new unoriented internal components may form 
after applying a reversal. Due to which ∆(k+f) may increase 
and distance will not reduce. The conditions described for 
translocations in the preceding section are applicable to 
reversals also. Only valid reversals are added to the solution 
set.    

4. ENUMERATING ALL PARSIMONIOUS 
REARRANGEMENT SEQUENCES  

The algorithm for enumerating sorting sequences of 
reversals and translocations is extension of the algorithm 
proposed by [8] for listing sorting sequences of reversals.  
The set of valid rearrangements (reversals and translocations) 
for a given pair of source and target genomes are obtained as 
described above. They are added to the initial solution set and 
termed as 1-sequences of rearrangement. The final solution 
set consists of d-sequences of rearrangements.  

Sl. 

No. 

Permutation d No. of 

Solutions 

1. {(1, 3, 2, 4, 5), (6, 7)} 3 6 

2. {(1, -3, 7), (5, -6, -2, 10), 

(8, 9, 4)} 

4 54 

3. {(1, 3, 2, 4, -9, 6, 7), (8, -

5, 10)} 

5 120 

4. {(1, 3, 2, 4, 5), (6, 8, 7, 9, 

10)} 

6 1264 

5. {(1, 3, 5, 4, 6, 2, 7), (8, 10, 

9, 11, 12)} 

8 166488 

6. (1, 3, 2, 4, -6, 7), (8, -11, 

5, 9, 12) (13, 14, 10, 15) 

10 >4000000 

 

Taking each operation ρ (reversal or translocation) from 
the set of 1-sequences and applying it over the source 
permutation (A), a new set of permutations is obtained. Each 
permutation A' of this set is one step closer to the target 
permutation. By repeating the above procedure over A', a new 
set of optimal 1-sequences is generated. When these 1-

sequences are combined with their predecessor ρ, a set of 
optimal 2-sequences is generated. Therefore, by iterating this 
algorithm, the set of all optimal sequences of reversals and 
translocations are obtained that transforms the genome A into 
B. This procedure is described by Algorithm 
listAllSortingSequences. 
 

Algorithm listAllSortingSequences (A, B) 

[Enumerating all optimal sorting sequences of reversals and 
translocations] 

Input: Source genome A and Target genome B 

Output: The set of all sequences of reversals and 
translocations sorting the source genome A into the target 
genome B  

begin 

d ← rearrangement distance between A and B 

R← {ρ | ρ is an optimal 1−sequence of reversal for A and B}       

 R′← {ρ | ρ R   ρ is an internal reversal} 

T ← {ρ | ρ is an optimal 1−sequence of                  
          translocation for A and B}   

 S ← R′ U T  [solution set] 

for each integer i from 2 to d  do 

S′←0   [contains the i-sequences] 

for each s [ (i-1)-sequence] in S    do 

A′ ← A ◦ s    [apply (i-1)- sequence  of rearrangements to A] 

R← {ρ | ρ is an optimal 1-sequence    
of reversal for A′ and B}  

R′← {ρ | ρ R   ρ is an internal reversal} 

T← {ρ | ρ is an optimal 1-sequence of  
translocation for A′ and B}              

G← R′ U T     for each  ρ in G  do 

s′ ← s.ρ [concatenate ρ at the end of sequence s] 

insert s′ in S′  [s′ is an i-sequence] 

end for 

end for 

S ←S′ end for return S  [S is the final set of d−sequences] 

end  
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5. IMPLEMENTATION 

The proposed algorithm has been implemented and tested 
with random permutations.  

Table 1 Computation Results 

The results obtained on a personal computer with 3 GB 

RAM are shown in Table 1. For sequence number 6 the 

complete set of solutions was not obtained due to memory 

limitations. 

6. CONCLUSION 

This paper solves the problem of finding optimal 

sequences of rearrangements for given two genomes that have 

evolved through reversals and translocations only. A method 

is presented for enumerating all possible optimal sequences 

that can transform the order and orientation of one of the 

given genome into that of the other genome. The solution 

space is huge due to large number of cut points detected at 

each step which requires large memory for storing all the 

results. Also, large number of solutions makes their analysis 

difficult. As a future work, solutions with same type of 

rearrangements can be merged into a single class of solutions. 

Some additional biological constraints may be applied to 

further reduce the size of solution set. Another future work is 

the addition of other rearrangement operations like fission and 

fusion, which remove the limitation of unique genes and same 

number of chromosomes in the given genomes.   
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