
Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 8; October, 2014 pp. 62-66
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/jbaer.html

Gray Box Testing: Proactive Methodology for
the Future Design of Test Cases to Reduce

Overall System Cost
Ruhi Saxena1, Monika Singh2

1, 2
Faculty of Engineering, Mody University of Science and Technology (MUST)

Abstract: Software testing is a highly complex and time
consuming activity & it is exhaustive. Grey box is a technique to
test the application with limited knowledge of the internal
working of an application and also has the knowledge of
fundamental aspects of the system. Gray box testing is a powerful
idea if one knows something about how the product works on the
inside; one can test it better, even from the outside. This paper is
focused on gray box testing & its different techniques plus
applications.

1. INTRODUCTION

Software testing is a process of verifying and validating that a
software application or program meets the business and
technical requirements that guided its design and
development, and works as expected. Software testing also
identifies important defects, flaws, or errors in the application
code that must be fixed.

Software testing has three main purposes: verification,
validation, and defect finding [4].

• The verification process confirms that the software meets
its technical specifications. A “specification” is a
description of a function in terms of a measurable output
value given a specific input value under specific
preconditions. A simple specification may be along the
line of “a SQL query retrieving data for a single account
against the multi-month account-summary table must
return these eight fields <list> ordered by month within 3
seconds of submission.”

• The validation process confirms that the software meets
the business requirements. A simple example of a
business requirement is “After choosing a branch office
name, information about the branch’s customer account
managers will appear in a new window. The window will
present manager identification and summary information
about each manager’s customer base: <list of data
elements>.” Other requirements provide details on how
the data will be summarized, formatted and displayed.

• A defect is a variance between the expected and actual
result. The defect’s ultimate source may be traced to a
fault introduced in the specification, design, or
development (coding) phases.[2]

The Attributes according to testing strategies & testing levels
are shown below:

Fig. 1. 1: Software Testing Dimensions

1.1 Testing strategies:

1.1.1 White box testing: White-box testing is also known as
structural testing, clear box testing, and glass box testing.
White box testing involves looking at the structure of the code.
When the internal structure of a product is known, tests can be
conducted to ensure that the internal operations performed
according to the specification and all internal components
have been adequately exercised.

Gray Box Testing: Proactive Methodology for the Future Design of Test Cases to Reduce Overall System Cost 63

Journal of Basic and Applied Engineering Research (JBAER)
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 8; October, 2014

Types of White-Box Testing:

• Code coverage

• Segment coverage

• Branch Coverage or Node Testing

• Compound Condition Coverage

• Basis Path Testing

• Data Flow Testing (DFT)

• Path Testing

• Loop Testing

1.1.2 Black Box Testing: Black-box testing is also known as
functional testing. It treats the system as a “black-box”, so it
doesn’t explicitly use knowledge of the internal structure or
code & test engineer need not know the internal working of
the “Black box” or application; the main focus is on the
functionality of the system as a whole [1][3].

Types of Black box Testing:

• Graph Based Testing Methods

• Error Guessing

• Boundary Value Analysis

• Equivalence Partitioning

• Behavioral Testing

• Random Testing/Stochastic Testing

• Syntax Testing

• Stress Testing

1.1.3 Gray Box Testing: Gray testing is also known as
translucent testing. Gray Box Testing is a software testing
method which is a combination of black box testing method
and white box testing method. It is a technique to test the
application with limited knowledge of the internal workings of
an application [7]. The aim of this testing is to search for the
defects if any due to improper structure or improper usage of
applications.

Fig. 1. 1. 3. 1: Gray Box testing

2. WHY WE NEED GRAY-BOX TESTING

There are certain problems with WBT & BBT listed below
which are overcome by GBT:

2.1 Problems with White-Box Testing (WBT)

Following are the problems with white-box testing:

• Potentially most exhaustive of the three, because It is not
possible to test each and every path of the loops in
program.

• Since test cases are written on the code, specifications
missed out in coding would not be revealed.

• Due to the fact that a skilled tester is needed to perform
white box testing, the costs are increased.

• Sometimes it is impossible to look into every nook and
corner to find out hidden errors that may create problems
as many paths will go untested.

• It is difficult to maintain white box testing as the use of
specialized tools like code analyzers and debugging tools
are required.

• Internals fully known.

2.2 Problems with Black-Box Testing (BBT)

Following are the problems with white-box testing:

• Low granularity

• It can test only by trial and error

• The test inputs needs to be from large sample space.

• Blind Coverage- It is difficult to identify all possible
inputs in limited testing time. So writing test cases is slow
and difficult

• Chances of having unidentified paths during this testing

• The test can be redundant if the software designer has
already run a test case.

• The test cases are difficult to design.

• Internals NOT known

2.3 Choosing Gray box testing over WBT and BBT based

upon various parameters

Gray box testing (GBT) scores over WBT & BBT because:

• It would not suffer from deficiency as describe for WBT.
It can test data domains, internal boundaries and over
flow, if known.

• It factors in high level design environment and the inter
operability conditions.

64 Ruhi Saxena, Monika Singh

Journal of Basic and Applied Engineering Research (JBAER)
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 8; October, 2014

• It addresses problems that are not as easily considered by
a black box or white box analysis, especially problems of
end-to-end information flow and distributed hardware /
software system configuration and compatibility.

• Context-specific errors that are germane to web systems
are commonly uncovered in this process.

• It is platform & language independent.

• It will increase the testing coverage by focusing on all of
the layers of any complex system through the
combination of all existing white and black box
techniques.

3. GRAY BOX TESTING

Gray Box testing is a technique to test the application with
limited knowledge of the internal workings of an application.
In software testing, the term the more you know the better
carries a lot of weight when testing an application [3][7].

Unlike black box testing, where the tester only tests the
application's user interface, in grey box testing, the tester has
access to design documents and the database. Examples of
grey box testing technique are:

• Architectural Model

• Unified Modeling language (UML)

• State Model (Finite State Machine)

Gray box testing encountered two types of issues:

• Test execution is in constant flow but content of the
output is not correct. Somewhere in system, data is
processed incorrectly and system thus generates error in
showing results.

• Any failure due to uncertain reasons and thus process is
aborted

Gray box Software Testing from Industry expert’s point of

views:

Industry experts have provided some definitions of gray box
testing; few of them are given below.

Definition – 1: "Gray box testing consists of methods and tools

derived from the knowledge of the application internals and

the environment with which it interacts, that can be applied in

black box testing to enhance testing productivity, bug finding

and bug analyzing efficiency – by Nguyen H.G

Definition – 2: "Gray box testing is using inferred or

incomplete structural or design information to expand or

focus black box testing". - Dick Bende

Definition – 3: "Gray box testing is designing of the test cases

based on the knowledge of algorithms interval states,

architectures or other high level descriptions of program

behavior". - Dong Hoffmar

Definition – 4: "Gray box testing involves inputs and outputs,

but test design is educated by information about the code or

the program operation of a kind that would normally be out of

scope of view of the tester". - Cem Kanei

3.1 Gray Box Methodology

The Gray box methodology is a ten step process for testing
computer software. The methodology starts by identifying all
the input and output requirements to a computer system. This
information is captured in the software requirements
documentation.

The Gray box methodology utilizes automated software
testing tools to facilitate the generation of test unique
software. Module drivers and stubs are created by the toolset
to relieve the software test engineer from having to manually
generate this code.

Table 1: 10 Steps Graybox Methodology

Steps Description

1 Identify Inputs

2 Identify Outputs

3 Identify Major Paths

4 Identify Subfunction (SF)X

5 Develop Inputs for SF X

6 Develop Outputs for SF X

7 Execute Test Case for SF X

8 Verify Correct Result for SF X

9 Repeat Steps 4:8 for other SF

10 Repeat Steps 7&8 for Regression

The toolset also verifies code coverage by instrumenting the
test code. “Instrumentation tools help with the insertion of
instrumentation code without incurring the bugs that would
occur from manual instrumentation”. By operating in a
debugger or target emulator, the Graybox toolset controlled
the operation of the test software. The Graybox methodology
has provide us the way to let a debugger into the real world
and into real-time. The methodology can be used in real-time
by changing the basic premise that inputs can be sent to the
test software via normal system messages and outputs are then
tested using the system output messages [3].

Gray Box Testing: Proactive Methodology for the Future Design of Test Cases to Reduce Overall System Cost 65

Journal of Basic and Applied Engineering Research (JBAER)
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 8; October, 2014

Gray-box testing uses assertion methods to preset all the
conditions required, prior to a program being tested. Testing
using Formal specification languages is one of the commonly
used techniques for ensuring that a core program is correct to a
very large extent. If the requirement specification language is
being used to specify the requirement, it would be easy to
execute the requirement stated and verify its correctness.
Gray-box testing will use the predicate and verifications
defined in requirement specification language as inputs to the
requirements based test case generation phase.

4. GRAY BOX TESTING TECHNIQUES

Different forms of grey box testing techniques are briefly
described below:

• Matrix Testing

• Strategy for Gray box Regression testing

• Pattern Testing

• Orthogonal Array Testing

4.1 Matrix Testing

In matrix testing the status report of the project is stated. The
idea of beginning your testing activities with a list of variables
used in the software is not new. You may have heard the term
CRUD (created, read, update and deleted) method. Basically it
starts with developers defining all the variables that exist in
their programs. Each variable will have an inherent technical
risk, business risk and can be used with different frequency
during its’ life cycle.

4.2 Software Regression Testing

Regression testing -testing that is performed after making a
functional improvement or repair to the program [6]. Its
purpose is to determine if the change has regressed other
aspects of the program. This can be accomplished by
executing the following testing strategies:

• Retest all: Rerun all existing test cases

• Retest Risky Use Cases: Choose baseline tests to rerun
by risk

• Retest By Profile: Choose baseline tests to rerun by
allocating time in proportion to operational profile

• Retest Changed Segment: Choose baseline tests to rerun
by comparing code changes. (White box strategy)

• Retest within Firewall: Choose baseline tests to rerun by
analyzing dependencies. (White box strategy)

4.3 Pattern Testing

Pattern testing is best accomplished when historical data of
previous system defects are analyzed. The analysis template
will include specific reasons for the defect, which will require

system analysis. Unlike black box testing where the types of
failures are tracked, gray box testing digs within the code and
determines why the failure happened. This information is
extremely valuable, as future design of test cases will be
proactive in finding the other failures before they hit
production. The coding structure in place influences gray box
test case design[9][10].

Analysis Template will include:

• The problem addressed

• Applicable situation

• The problem that can be discovered

• Related problems

• Solution for developers that can be implemented

New test cases will include:

• Security related test cases

• Business related test cases

• GUI related test cases

• Language related test cases

• Architecture related test cases

• Database related test cases

• Browser related test cases

• Operating System related test cases

4.4 Orthogonal Array Testing

Orthogonal Array Testing is a statistical testing technique
implemented by Taguchi. This method is extremely valuable
for testing complex applications and e-comm. products. The e-
comm. world presents interesting challenges for test case
design and testing coverage. The black box testing technique
will not adequately provide sufficient testing coverage. The
underlining infrastructure connections between servers and
legacy systems will not be understood by the black box testing
team. A gray box testing team will have the necessary
knowledge and combined with the power of statistical testing,
an elaborate testing net can be set-up and implemented.

The theory -Orthogonal Array Testing (OAT) can be used to
reduce the number of combinations and provide maximum
coverage with a minimum number of test cases. OAT is an
array of values in which each column represents a variable -
factor that can take a certain set of values called levels. Each
row represents a test case. In OAT, the factors are combined
pair-wise rather than representing all possible combinations of
factors and levels.

66 Ruhi Saxena, Monika Singh

Journal of Basic and Applied Engineering Research (JBAER)
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 8; October, 2014

5. ADVANTAGES & DISADVANTAGES

Some of the advantages & disadvantages of gray box testing
are listed below:

5.1 Advantages:

• Offers combined benefits: It serves advantages from
both black-box & white-box testing

• Non-Intrusive: Based on functional specification,
architectural view whereas not on source code or binaries
which makes it invasive too.

• Intelligent test authoring: Tester handles intelligent test
scenario. Ex: data type handling, communication
protocol, exception handling.

• Unbiased Testing: Gray-box testing maintains boundary
for testing between and developer.

5.2 Disadvantages

• Partial code coverage: Source code or binaries are
missing because of limited access to internal or structure
of the applications results in limited access for code path
traversal.

• Defect Identification: In distributed application, it is
difficult to associate defect identification.

6. APPLICATIONS OF GRAY BOX TESTING

Gray box testing is well suited for Web Applications. Web
applications have distributed network or systems; due to
absence of source code or binaries it is not possible to use
white box testing. Black box testing is also not used due to just
contract between customer and developer, so it is more
efficient to use gray box testing as significant information is
available in Web Services Definition Language(WSDL)

Gray box testing is suited for functional or business domain
testing. Functional testing is done which is basically a test of
user interactions may be with external systems. As gray box
testing can efficiently suits for functional testing due to its

characteristics; it also helps to confirm that software meets the
requirement. Functional testing due to its characteristics; it
also helps to confirm that software meets the requirement
[3][8].

7. CONCLUSION

By implementing gray box testing, the overall cost of system
defects can be reduced and prevent more from passing the
testing stage. If the development process tries to accumulate
the benefits of black box and gray box then gray box testing is
preferable due to moderate granularity. Gray box testing is
well suited for Web applications, Web services, functional or
business domain testing, security assessment, GUI, distributed
environments, etc.

REFERENCES

[1] Boris Beizer, “Software Testing Techniques”, Van Nostrand
Reinhold CompanyInc, New York, 1983.

[2] Cem Kaner, James Bach, Bret Pettichord, “Lessons Learned in

Software Testing”, 2002.

[3] Boris Beizer, “Black-Box Testing: Techniques for Functional

Testing of Software and Systems”, 2003.

[4] Jerry Gao, Raquel Espinoza, Jingsha He, "Testing Coverage

Analysis for Software Component Validation", In Proceedings
29th Annual International Computer Software and Applications

Conference (COMPSAC’05), 2005.

[5] J. Gao, D. Gopinathan, Quan Mai, Jingsha He, “A Systematic

Regression Testing Method and Tool For Software

Components”. In Proceedings 30th Annual International on

Computer Software and Applications Conference, IEEE
Computer Society, September 2006, Volume 1.

[6] André Coulter, “Graybox Software Testing Methodology –

Embedded Software Testing Technique”, In proceedings 18th

IEEE Digital Avionics Systems Conference, 1999.

[7] Boris Beizer, “Software System Testing and Quality Assurance”,

Van Nostrand Reinhold Company Inc, New York, 1984.

[8] P. C. Jorgensen, “Software Testing: A Craftsman’s Approach”,
CRC Press, 2nd ed., 2002.

[9] M. Buchi and W. Weck., “The Graybox approach: when

blackbox specifications hide too much”, Technical Report
TUCS TR No. 297, Turku Centre for Computer Science, 1999.

