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Abstract: The RSA public key and signature scheme is often used 
in modern communications technologies; it is one of the firstly 
defined public key cryptosystem that enable secure 
communicating over public unsecure communication channels. 
In praxis many protocols and security standards use the RSA, 
thus the security of the RSA is critical because any weaknesses in 
the RSA crypto system may lead the whole system to become 
vulnerable against attacks. This paper introduce a security 
enhancement on the RSA cryptosystem, it suggests the use of 
randomized parameters in the encryption process to make RSA 
many attacks described in literature, this enhancement will make 
the RSA semantically secure, this means that that an attacker 
cannot distinguish two encryptions from each other even if the 
attacker knows (or has chosen) the corresponding plaintexts A 
comparison introduced in this paper between the basic RSA and 
the modified RSA version shows that the enhancement can easily 
be implemented. This paper also briefly discuss some other 
attacks on the RSA and the suitable choice of RSA parameter to 
avoid attacks, also an important issue for the RSA 
implementation is how to speed up the RSA encryption and 
decryption process. 
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1. INTRODUCTION 

The computer and communication technology's today are very 
important parts for a strong economy, thus it is important to 
have suitable security standards systems and technologies to 
meet that security needs. Many security systems and protocols 
have been developed that are based on standards, such 
standards comes mostly from well known standard 
organizations (e.g. Internet Architecture Board (IAB), Internet 
Engineering Task Force (IETF), etc.) that specify a huge set of 
security protocols, algorithms and applications which provide 
security services and meets the needs for data privacy and 
secure communication. A powerful tool for protection is the 
use of Cryptography. Cryptography underlies many of the 
security mechanisms and builds the science of data encryption 
and decryption. Cryptography [1] enables us to securely store 
sensitive data or transmit across insecure networks such that it 
cannot be read by anyone except the intended recipient. By 
using a powerful tool such as encryption we gain privacy, 

authenticity, integrity, and limited access to data. In 
Cryptography we differentiate between private key 
cryptographic systems (also known as conventional 
cryptography systems) and public key cryptographic systems. 
Private Key Cryptography, also known as secret-key or 
symmetric-key encryption, has an old history, and is based on 
using one shared secret key for encryption and decryption. 
The development of fast computers and communication 
technologies did allow us to define many modern private key 
cryptographic systems, e.g. in 1960's Feistel cipher [2], Data 
Encryption Standard (DES), Triple Data Encryption standards 
(3DES), Advanced Encryption Standard (AES), The 
International Data Encryption Algorithm (IDEA), Blowfish, 
RC5, CAST, etc. The problem with private key cryptography 
was the key management, a system of n communicating 
parties would require to manage ((n-1)*n)/2 this means that to 
allow 1000 users to communicate securely, the system must 
manage 499500 different shared secret key, thus it is not 
scalable for a large set of users. A new concept in 
cryptography was introduced in 1976 by Diffie and Hellman 
[2] this new concept was called public-key cryptography and 
is based on using two keys (Public and Private key). The use 
of public key cryptography solved many weaknesses and 
problems in private key cryptography, many public key 
cryptographic systems were specified (e.g. RSA [3], ElGamal 
[4], Diffie-Hellman key exchange [2], elliptic curves [5], etc.). 
The security of such Public key cryptosystems is often based 
on apparent difficulties of some mathematical number theory 
problems (also called "one way functions") like the discrete 
logarithm problem over finite fields, the discrete logarithm 
problem on elliptic curves, the integer factorization problem or 
the Diffie-Hellman Problem, etc. [1]. 

One of the firstly defined and often used public key 
cryptosystems is the RSA. The RSA cryptosystem is known as 
the ―de-facto‖ standard for Public-key encryption and 
signature worldwide and it has been patented in the U.S. and 
Canada. Several standards organizations have written 
standards that use of the RSA cryptosystem for encryption, 
and digital signatures [6], in praxis RSA is used in many 
internet security protocol and applications e.g. securing 
emails, securing e-payment and in related certification 
solutions. 
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The RSA cryptosystem was named after his inventors R. 
Rivest, A. Shamir, and L. Adleman and is one of the mostly 
used public-key cryptosystem, the patent (4, 405, 829) was 
registered in the 14 of December 1977 (and did expired on 
September 21, 2000), it was assigned to the Massachusetts 
Institute of Technology, and it covers the RSA public-key 
encryption and the digital signature method. 

Many well known standard organizations specified security 
standards which define the implementation and the use of 
RSA in security systems [7] [8]. 

Due to the wide use of the RSA cryptosystem, is it critical to 
ensure a high level of security for the RSA, in this paper I 
introduce a new enhancement to the security of the RSA 
cryptosystem, this is achieved by using randomized parameter, 
this will make the encrypted message more difficult for an 
adversary to break, thus making the RSA more secure. 

2. PROBLEM FORMULATION 

The security of the RSA cryptosystem is based on the 
intractability of the RSA problem. This means that if in the 
future the RSA problem is generally solved then the RSA 
cryptosystem will no longer be secure. 

The following algorithms describe the RSA key generation, 
and the RSA cryptosystem (basic version) 

Algorithm 2.1: Key generation for the RSA public-key 
encryption 

Each user A creates an RSA public key and the corresponding 
private key. 
User A should do the following: 
1. Generate two large random (and distinct) primes pAand 

qA, each roughly the same size. 
2. Compute n= p*q and ø(n) = (p-1)(q-1). 

3. Select a random integer e, 1 < e < ø(n), such that gcd(e, 

ø(n))=1. 
4. Use the Euclidean algorithm to compute the unique 
integer d, 1 < d <ø(n), such that 
 e*d ≡ 1 (mod ø(n)). 

5. User A public key is (n, e) and A’s private key is d 

Definition The integer's e and d in RSA key generation are 
called the encryption exponent and the decryption exponent, 
respectively, while n is called the modulus. 
Algorithm 2.2: The RSA public-key encryption and 
decryption (Basic version) 
User B encrypts a message m for user A, which A decrypts. 
1. Encryption. User B should do the following: 

(a) Obtain user A authentic public key (n, e). 

(b) Represent the message as an integer m in the interval 
[0, n-1] 

(c) Compute c = m^e mod n 

(d) Send the encrypted text message c to user A. 

2. Decryption. To recover plaintext m from c, user A 
should do the following: 

 (a) Use the private key d to recover m = (m^e)^d mod n 

 The original RSA encryption, decryption does not 
contain any randomized parameter making the RSA 
cryptosystem deterministic, which means that an attacker 
can distinguish between two encryptions, based on this 
many of the attacks listed below can be performed on the 
RSA basic version. 

 
3. Enhancing the security of the RSA cryptosystem 
 The key generation remain unchanged as in the original 

RSA, see above. The following algorithms describe the 
enhanced RSA cryptosystem. 

 Algorithm 3.1: The enhanced RSA public-key 
encryption and decryption (Modified version) 

 User B encrypts a message m for user A, which A 
decrypts. 

 1. Encryption. User B should do the following: 
(a) Obtain user A authentic public key (n, e). 

(b) Represent the message as an integer m in the interval 
[0, n-1] 

(c) Select a random integer k, 1 < k < n, such that gcd(k, 

n))=1 

(d) Compute c1 = k^e mod n 

(e) Compute c2 = m^e k mod n 

(f) Send the encrypted text message (c1, c2) to user A 
 

 2. Decryption. To recover plaintext m from c2, user A 
should do the following: 
(a) Use own private key d and compute: c1 

d = k mod n 

(b) Use the Euclidean algorithm and calculate the unique 
integer s, 1< s < n, such that s*k ≡ 1 (mod n). 

(c) Compute c2s = (m e k) s = (me) k s = m e mod n 

(d) Recover m, use the private key d and compute: ( m^e) 

d = m mod n 

 
The following example illustrates the use of modified RSA 
cryptosystem. 
Example: (RSA Encryption/Decryption) 
Key Generation: Assume p= 2350, q= 2551, n = p*q = 

6012707 

 
1. Encryption. User B should do the following: 

(a) User A authentic public key e = 3674911 

(b) Message m = 31 

(c) Random k = 525 

(d) Compute: 5253674911 = 20639 mod 6012707 

(e) Compute: 313674911 525 = 2314247 mod 6012707 

(f) Send (20639, 2314247) to user A 
2. Decryption. To recover plaintext m from c, user A 

should do the following: 
(a) User A private key d\ = 422191, compute: 
20639422191 = 525 mod 6012707 

(b) Extended GCD(525, 6012707) 	s = 3516002 
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 (c) Compute: 2314247 * 3516002 = 2913413 mod 

6012707 

 (d) Recover m: 2913413422191 = 31 mod 6012707 

 

The RSA encryption/decryption is much slower than 
commonly used symmetric-key encryption algorithms such as 
the well know algorithm DES and this is the reason why in 
practice RSA encryption is commonly used to encrypt 
symmetrical keys or to encrypt small amount of data, there are 
many software solutions or hardware implementations to 
speeding up the RSA encryption/ decryption process. For 
more information about speeding up RSA software 
implementations see [6]. 

Because the basic version of the RSA cryptosystem has no 
randomization component an attacker can successfully launch 
many kinds of attacks, now we discuss some of these attacks. 
1. Known plain-text attack; a known-plaintext attack is one 
where the adversary has a quantity of plaintext and 
corresponding cipher-text [6]. 

Given such a sorted set S = {{p1, c1}, {p2, c2}, ..., {pr, cr}} 

(where pi 	P plaintext set, ci 	C ciphertext set, r <ø (n) is the 
order of Zn*) anadversary can determine the plaintext pxif the 
corresponding cx is in S. 

The following example shows the relationship between the 
length of S and the probability of finding a searched 
elementpxin S. 

Example: assume p = 10^8, the function f = x/p, where x x 

∈ Zn* 

 

The modified version of the RSA described above use k as 
randomizing parameter; this can protect the encrypted text 
against known plain text attacks, because even if we know px, 
in the equation: 

px = kxmx 
kxand mx will still remain unknown. 

Next we investigate the probability p that two encrypted 
blocks of the same message m have equal random integer ki, , 
this probability is equal: 
Pk1=k2(m) = 2/n,  

Where n is the RSA modulus, the following sketch show that 
for approx. 1024 bit n, the probability is very close to zero. 

 

2. Chosen Cipher Text Attack: RSA has the property that 
the product of two cipher texts is equal to the encryption 
of the product of the respective plaintexts. That is m1e 

m2e = (m1m2) e mod n. Because of this multiplicative 
propertya chosen-cipher text attack is possible. the 
algorithm can be described as follows: Let c = me mod 

m, the attacker chooses a random number r where 1 < r 

< n, such that gcd(r, n))=1 then compute x = r^e mod n, 

c’= x * c mod n, z = r-1 mod n, and send c’to victim. 
The victim compute m’= (c’)d mod n, then send m’to the 
attacker, the attacker recovers original message m = z * 

m’mod n. This attack is based on the theoretical 
assumption that the attacker has access to a decryption 
device that returns the complete decryption for a chosen 
cipher text. The run time estimation is O( m’ * n3), 

which is polynomial thus impractical.  

3. Exhaustive Search Attack: It involves systematically 
checking all possible keys until the correct key is found. 
In the worst case, this would involve traversing the entire 
search space, thus O(n) elements to check. To avoid such 
attack is it important for RSA security that the size of the 
modulus n which depends on the size of the prime's p 

and q, where p and q should be so selected that factoring 
is computationally infeasible. 
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4. Johan Håstad and Don Coppersmith Attack: If the 
same clear text message is sent to more recipients in an 
encrypted way, and the receivers share the same 
exponent e, but different p, q, and n, then it is easy to 
decrypt the original clear text message via the Chinese 
remainder theorem [6]. Johan Håstad [9] described this 
attack and Don Coppersmith [10] improved it.  

5. Common Modulus Attack: If also same message m is 
encrypted twice using the same modulus n, then one can 
recover the message m as follows: Let c1=me1 mod n, 
and c2=me2 mod n be the cipher texts corresponding to 
message m, where gcd(e1, e2)=1, then attacker recovers 
original message m1=c1a * c2b mod n for e1*a+e2*b=1. 
Using the extended great common divisor (GCD) one 
can determine a and b then calculate m without knowing 
private key d, this is known in the literature as the 
Common Modulus Attack that requires O((log k)2), 

where k is maximum size of a or b.  

6. Timing Attack: One attack on the RSA implementation 
is the Timing Attack; Kocher [11] demonstrated that an 
attack can determine a private key by keeping track on 
how long a computer takes to decrypt a message. 

7. Small Public/Private exponent e/d Attack: To reduce 
decryption time, one may wish to use a small value of 
private exponent d or reduce the encryption time using a 
small public exponent e, but this can result in a total 
break of the RSA cryptosystem as Coppersmith [12] and 
M.Wiener [13] showed. 

8. Adaptive chosen cipher text attacks: In 1998, Daniel 
Bleichenbacher [14] described the first practical adaptive 
chosen ciphertext attack, against RSA-encrypted 
messages using the PKCS #1 v1 [15] padding scheme (a 
padding scheme randomizes and adds structure to an 
RSA-encrypted message, so it is possible to determine 
whether a decrypted message is valid.) Bleichenbacher 
was able to mount a practical attack against RSA 
implementations of the Secure Socket Layer protocol 
(SSL) [16], and to recover session keys, here it is 
important to mention that such protocol is still often used 
in internet to secure emails and e-payment via internet. 
As a result of this work, cryptographers now recommend 
the use of provably secure padding schemes such as 
Optimal Asymmetric Encryption Padding, and RSA 
Laboratories has released new versions of PKCS #1 that 
are not vulnerable to these attacks. 

9. Attacks on the factorization problem: Some powerful 
attacks on the RSA cryptosystem are the attacks on the 
factorization problem; the factoring algorithms to solve 
the factorization problem come in two parts: special 
purpose and general purpose algorithms. The efficiency 
of special purpose depends on the unknown factors, 
whereas the efficiency of the latter depends on the 
number to be factored. Special purpose algorithms are 

best for factoring numbers with small factors, but the 
numbers used for the modulus in the RSA do not have 
any small factors. Therefore, general purpose factoring 
algorithms are the more important ones in the context of 
cryptographic systems and their security. A major 
requirement to avoid factorization attacks on the RSA 
cryptosystem is that p and q should be about the same 
bits length and sufficiently large. For a moderate security 
level p and q should be at least 1024 bits length, this will 
result in a 2048 bit length for modulus n. furthermore p 

and q should be random prime number and not of some 
special case binary bit structure. The following table 
summarizes the running time for some of the well known 
integer factoring algorithms where p denotes the smallest 
prime factor of n, and e=2.718 is the Euler’s constant. 

Table: Factorization algorithms  Algorithm Runtime estimation 

1. Pollard’s RhoO( p ) 

2. Pollard’sp-1 O(p*) where p* is the largest prime factor 
of p-1.  

3. William’sp+1 O(p*) where p* is the largest prime factor 
of p+1. 

4. Elliptic Curve Method  O(e(1+o(1)) (2ln p lnln p)1/2 ) 

5. Quadratic Sieve  O(e(1+o(1)) (ln N lnln N )1/2) 

6. Number Filed Sieve O(e(1.92+o(1))(ln N)1/3(lnln N)2/3) 

In 2010, the largest number factored by a general-purpose 
factoring algorithm was 768 bits long [23] using distributed 
implementation thus some experts believe that 1024-bit keys 
may become breakable in the near future so it is currently 
recommended to use 2048 for midterm security and a 4096-bit 
keys for long term security. Now, the described RSA security 
enhancement in this paper can protect us against the following 
attacks:  

Table: RSA enhancement is immune against the following 
attacks 

Attack    Justification 
1. Known plainIs not possible  
 as -text attack   described above 
2. Small public e Is not possible due to the exponent use of 

random integer k 
3. Johan Hasted and Is not possible because  
 Don Coppersmithevery msg. have 
    attack unique ki 
4. Common    Is not possible because 
 Modulus    every msghave unique 
 Attack    ki 
5. Timing   Using k in encrypt. & decrpt. 
 Attack   process will make it difficult  
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    To distinguish between time 
 fork and the time for public e 
 or private key e 
 
6. Adaptive   One can use randomized  
 chosen cipherinteger k instead of secure 
 textattacks   padding. 

This will make the RSA cryptosystem more secure compared 
with the basic version of the RSA cryptosystem. The 
enhancement makes the RSA cryptosystem semantically 
secure this means that an attacker cannot distinguish two 
encryptions from each other even if the attacker knows (or has 
chosen) the corresponding plaintexts For more detailed 
information about attacks on RSA see [6] [24]. 

3. CONCLUSIONS 

In this paper I briefly discussed enhancing the security of the 
RSA public-key cryptosystem, this enhancement use 
randomized parameter to change every encrypted message 
block such that even if the same message is sent more than 
once the encrypted message block will look different. The 
major advantage gained in the security enhancement described 
above is making RSA system immune against many well 
known attacks on basic RSA cryptosystem, thus making the 
RSA encryption more secure, this is essential because RSA is 
implemented in many security standards and protocols and a 
weak RSA may result in a whole compromised system. One 
solution that is used in praxis to overcome this problem is the 
use of padding bits in the encryption process, but this may not 
always work well if we have a long message where many 
blocks are without padding or if the adversary knows the 
padding bits. Although the security enhancement make RSA 
more secure nevertheless it should be noted that the RSA 
modulus n bit length should be at least 2048 to ensure a 
moderate security and to avoid powerful attacks on the 
discrete logarithm and factorization problem. This security 
consideration and other mentioned in literature should be used 
to define an improved version of the RSA. 

Many public key cryptographic system such as the RSA build 
their security on the intractability of the factorization and the 
discrete logarithm problem, if such problem are solved in 
future due to new mathematic insights or new computer 
technologies [25] this may result in huge set of compromised 
public key crypto and security systems. 
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