
Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 8; October, 2014 pp. 50-54
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/jbaer.html

Client vs. Server Implementations of Mitigating
XSS Security Threats on Web Applications

Prashant Singh1, P.N. Barwal2
1, 2

Centre for Development of Advanced Computing, Noida, India

Abstract— this paper begins by introducing the concept of Cross-
site scripting (XSS) attacks. The introductory section gives brief
information on web applications, web application standards and
various types of security attacks. In order to examine the impact
of XSS attack, this paper will talk about various types of
Scripting attacks. The paper will then address the feasibility of
various proposed solutions to mitigate this attack. This situation
leads to further research regarding practical solutions in
implementing a secure web application. This paper will also
cover the new standards to improve the security of Web
Applications. Then the paper looks for an optimized solution,
measuring the pros and cons of client versus server
implementations, for preventing XSS attacks without sacrificing
the usability of the web application. Finally, this paper ends with
the conclusion of compared results, highlighted issues and
solutions.

Keywords: Web Application Standards, Security Issues, Security
Measures, XSS Scripting

1. INTRODUCTION TO WEB APPLICATIONS

Web yapplication is a software that runs on the web i.e. using
a web browser. These applications can be made using any
technology and with the help of languages supported by web
browsers. Over the past decade or so, web has become a huge
source of data and a lot of web applications are used for
connecting and sharing information with its users. From a
technical point of view, web is an environment that allows a
variety of customizations and also allows to deploy
applications built using different technologies on various
platforms. These applications can be made available to
millions of users at a very fast and inexpensive rate. This has
become the reason for the exponentially increasing popularity
of these applications. So the basic architecture of a web
application consists of an environment – web, tools to build
the application – programming languages and the interface to
run the applications – web browsers.

“World Wide Web Consortium (W3C) is an international
Community that develops open standards to ensure long-term
growth of the web”. [1] It is responsible for setting up standards
for the various technologies used in web to make it suitable
and secure for the common user. It also helps in educating

people about web. It develops protocols and guidelines to
ensure the growth of web. It defines standards for the
following technologies under Web Design and Applications.

HTML & CSS, JavaScript Web APIs, Graphics, Audio and
Video, Accessibility, Internationalization, Mobile Web,
Privacy and Math on Web.

With the increase in the amount of data present in web, it has
become indispensable to take care of the security of the web
applications that retrieve this data from the databases and
present them to the client. Since the information accessed by
web applications is very sensitive and can be used by any
malicious body for their benefits, it’s the need of the hour that
we secure them. Web applications have evolved drastically,
and so have the ways to exploit them. Few of the attacks that
are known are Cross site scripting, SQL Injection, Path
Disclosure, Denial of Service, Code Execution, Memory
Corruption, Cross site request forgery, Information disclosure,
Arbitrary file, Local File include, Remote File include, Buffer
Overflow etc.

In this paper, we talk about the XSS attacks commonly known
as Cross-Site scripting attacks. This attack is a major threat to
most of the web applications as it may result in a severe loss
of sensitive data. There are various methods to avoid this
attack, we’ll be talking about the client as well as server side
implementations of mitigating this attack. And in the end we’ll
try to come up with simple steps that can be taken at the server
/ client end in order to avoid this attack at the very basic step.

This paper is outlined as follows. Section I provides the
introduction to Web application architecture and also covers
its basic components and common standards for developing
web applications. Section II describes various security threats
of web applications. This section covers most of the common
attacks in brief and describes Cross Site Scripting in details.
Section III describes the various code-level implementations to
avoid Cross Site scripting attack. This section covers the
server and client side implementations of mitigating this
attack. Section IV provides some of the practical solutions for
securing web applications. This section addresses some

Client vs. Server Implementations of Mitigating XSS Security Threats on Web Applications 51

Journal of Basic and Applied Engineering Research (JBAER)
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 8; October, 2014

important guidelines for the users (Application administrators)
to secure their Web application at the code level. Section V
highlights a few research topics that can be further explored to
strengthen the security of these web applications.

Study of securely using web application against other attacks,
such as SQL injection etc., is outside the scope of this paper.

1.1 WEB APPLICATION

One important advantage of Web application ease of access
for a huge amount of users. Installing a web application is
easy and eliminates the need to provide multiple revisions as
in case of desktop based applications. Broadly a web
application comprises of Web components, a database and a
client to render the web application – Web Browser.

1.1.1 Web components

Web Components can be web servers, servlets, web pages,
web service endpoints, or JSP pages.

1.1.2 Architecture

1-1 Web Application Architecture

Client sends the request to the web servers, which then process
the request and fetch the required data and return back to the
client.

1.1.3 Security Issues
 [2]

Despite their advantages, these applications may result in a lot
threats to the integrity and security of the data they linger on.
The main reason that web applications get compromised easily
are that:

• They need to be available to public all the time to provide
service to its users.

• Firewall and SSL are not sufficient to provide protection
against hacking of web applications, as access to these
web applications has to public.

• These applications have direct access to the backend data,
and thus require additional level of security.

• Most of the web applications are custom made, and hence
are not tested well for all kinds of malicious attacks.

1.2 CROSS SITE SCRIPTING

Cross-Site scripting refers to the technique of compromising a
web application by sending a malicious piece of code to the
web application. It helps the attacker to collect data from the
genuine user or may result in unauthorized access/use of the
web application database. It is considered as the most common
attack in web applications. [3]

Fig. 1-2 Web Hacking Incident Database 2011 (WHID)

The pie-chart clearly shows that the extent of SQL Injection
followed by Cross site scripting is maximum amongst the rest
of the hacking incidents. Web applications are made up of
either static web pages or dynamic web pages. Static web
pages contain fixed information and the content of these pages
can be trusted at all times. Whereas, dynamic web pages are
generated with the content taken at various steps, the attacker,
at this step embeds the malicious code (in a browser
understandable language) in the web application dynamic
page. This malicious code is then rendered by the web browser
of the client and thus this attack takes place.

Fig. 1. 3 XSS attack [3]

Attacker Genuine

User
Web App. False URL

52 Prashant Singh, P. N. Barwal

Journal of Basic and Applied Engineering Research (JBAER)
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 8; October, 2014

Figure 1.3 shows the high level diagram of how a XSS attack
works. Firstly the malicious script is used by the hacker to
infect the original web application. It is injected in the system
in the form of input to the web application. The real user,
when uses the web application, falls prey to the script injected
by the attacker. And the script results in either sacrificing the
data of the genuine user, or it results in taking the user from
the web application to some other place where the attacked
can take advantage of the user data. Cross site scripting can be
classified broadly into two categories:

1.2.1 Non-Persistent or Reflective

In this type of XSS attack, the attacker sends the malicious
URL to the genuine user by the means of email or message. If
the user clicks on the URL, a request is sent from his browser
to the web application and the malicious code is injected in the
user’s browser. This script is then automatically executed, to
obtain information regarding the client. The malicious script
thus stays on the client browser. For example, if an attacker
injected a script in the browser, accessing any google sites
while logged in will transfer the information to the attacker
without the notice of the genuine user.

1.2.2 Persistent or Stored

In Persistent XSS attack, the malicious code is saved at the
‘trusted’ server. Attacker inputs the malicious piece of code as
a part of the genuine information and the information gets
stored at the local database of the web application
permanently. So, whenever any user requests that information,
the malicious output is returned to them. For example, a
simple application that takes name of the user as input.
Displays the link of the user name and when clicked, redirects
to the user profile. Attacker will inject the malicious script
along with his / her name and when clicked, it will redirect to
whichever place they want. This type of attack is more severe
than the Non-Persistent version as the genuine information
gets modified for all the users by attacking only once.

1.2.3 DOM Based XSS attacks

Persistent and Non Persistent XSS attacks mention the transfer
of malicious information from client to server or server to
client. This type of XSS attack occurs when the malicious
information is injected in the client browser and the
information stays in the client itself. As defined by Amilt et Al
[4], “The entire tainted information flow from sink to source
takes place in the browser”

The broader level of categorization of XSS attacks would be
as Server XSS and Client XSS.[5]

1.2.4 Server XSS

This category of XSS attacks include those where the
malicious script injected by the attacker becomes a part of the

response generated by the web application server. The source
of the data could be from a request or from a stored location,
so both Persistent and Non-Persistent types fall under this
category.

1.2.5 Client XSS

It occurs when the malicious data is used to update the DOM
with a malicious JavaScript call. The source of the data could
be from the DOM or from the server. But the ultimate source
of data is either the request from the client or stored at the
server. Thus, Persistent and Non-Persistent types also fall
under this category. DOM based XSS attacks are a subset of
this type.

1.3 SECURITY MEASURES

As discussed in the previous sections, XSS attacks pose a
server threat to the web application and its users. So we need
to find ways to mitigate this threat. Broadly there can be two
categories for avoiding XSS threats:

1.3.1 Client-Side implementations:

The basic aim of these implementations is to validate the input
coming from the client. We will identify a few client side XSS
mitigating solutions.

1.3.2 Noxes tool
[6]

It is a Microsoft-Windows based tool that acts a personal
firewall and runs as a background service on the system of a
user. Noxes provides an additional layer of protection as
compared to the traditional firewalls placed in our systems. It
allows users to create filter rules for the web requests. Noxes
is a promising client side tool that can help avoid the XSS
attacks and also its advanced versions, but it still requires the
user to cancel the operation that would lead to an attack. As
mentioned in their research, the target users for this tool are
people with a certain level of “technical sophistication”. Few
limitations of using Noxes are:

1. It is not a freeware. Web applications that require
support of an open-source / freeware will not opt for
such solution.

2. It is not an automated solution that works for all the
websites. User has to manually define the rules, like in
case of firewalls for each website.

3. It lacks the SSL support.

1.3.1.2 ntiSamy
[7]

:

AntiSamy is an Open Source web input validation encoding
project by OWASP (Online Web Application Security
Project). It also has the option of defining rules as a part of its

Client vs. Server Implementations of Mitigating XSS Security Threats on Web Applications 53

Journal of Basic and Applied Engineering Research (JBAER)
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 8; October, 2014

XML configuration file, where the user can define the types of
inputs allowed for a particular web application. Currently it is
released only to support web applications developed using
Java and .Net technologies. The input HTML is supplied to
the Antisamy filter where all the input parameters are
validated against the policies defined in the XML
configuration file. If the input violates the policy, a user
friendly message is shown and the input is removed from
being inserted in database.

The workflow of AntiSamy project is as follows:

Fig. 2 1 Workflow of AntiSamy Project

Firstly, the input from the user is converted to Parser
understandable format. It allows the creation of DOM objects
and provides clean output. It also prevents the fragmentation
attacks. The converted file is then scanned and the policy file
is used to define responses for each of the tags present in the
converted file. Then each tag is validated and malicious
content is filtered while creating the response. Then finally the
converted file is serialized back as HTML/XHTML.

The disadvantages of using this technique are:

1. Currently the support is only for Java and .Net
frameworks.

2. The payload increases, as the processing time between
the request and server response gets increased by adding
the additional layer in between.

1.3.2 Server side Implementations:

Server side implementations allow attacker to inject the
malicious code at the client end, and filter them out at
response time.

1.3.2.1 DeDacota
 [8]

:

Doupé, Adam, et al propose deDacota, a tool to prevent server
side XSS attacks. It is based on the technique that the
JavaScript is separated from the HTML code of the web
application. The semantics of the web application are kept
intact and the code is then re-written, free of malicious scripts.
DeDacota is basically the prototype tool built in ASP .Net
framework. It also acts as a static engine analyzer. It works on
the binaries of the web applications to statically sanitize them.

The limitations of using deDacota kind of prototype in a real-
world scenario are:

1. Applications that are built in ASP.Net use the dynamic
language features of ASP .Net to decide the output of the
application will not have a detailed static analysis of the
web application.

2. It does not support complex string operations, like
regular expressions.

3. The prototype – deDacota, does not handle JavaScript in
the HTML attributes.

1.3.2.1 XSS Filter:

In other implementations, Duraisamy A, et al talk about
filtering the web application inputs at the server end. They use
a JavaScript detection algorithm to identify scripts in the
input. Then they use a reverse proxy component to extract the
request parameters and return the parameter to the JavaScript
analyzer. Then the XSS filter sanitizes the malicious scripts to
filter out clean code. Then comments are removed, so as to
balance HTML tags, it also removes blank spaces etc. It
finally uses a Data Access object to fetch data instead of the
type and implementation of actual data. It helps in moving
data source to a different location without having to change
the business logic.[9]

The main limitations of using this kind of approach are in
terms of the overhead filtering process creates, as it is a multi-
staged filtering mechanism. The payload of the application
increases and this in-turn arises the question of usable
security.

1.4 GENERIC SOLUTIONS

The various steps that can be taken at the application
architecture level are:

1. Input validation or Input Refining – All the inputs to the
web application must be carefully monitored, and only
white listed inputs should be allowed in the application.

2. Escaping essential HTML characters – While
implementing any XSS filter, it is important to whitelist
desired characters carefully. For example, < and >
characters may be required in the HTML, but they attract
filters’ suspicion as malicious characters.

3. Using HTTP Only Cookies only – Using HttpOnly flag
while creating cookies helps protect the client side script
accessing the protected cookie.

4. Escape, JavaScript, CSS, attributes and URLs before
input in the system.

5. Using CSP (Content Security Policy) to secure the whole
web application – It’s a W3C specification that tells
informs the client web browser about the location and
the type of the resources that are whitelisted.

CONVERT SCAN RESPOND SERIALIZE

54 Prashant Singh, P. N. Barwal

Journal of Basic and Applied Engineering Research (JBAER)
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 8; October, 2014

1.5 ANALYSIS OF TECHNIQUES

1.5.1 Client Side Implementations:

Pros and Cons of the client side implementations:

Pros:

1. Filtering the data at the client end - Client side
implementation as discussed, filter the input fields before
sending the request to the database. Thus, it prevents the
minimal chances of sending the malicious code to the
database server.

2. Compatibility: Since these filters are enabled at the client
end, they don’t rely on technology or framework of the
application that is being made. These implementations
irrespective of the technology are able to filter out the
malicious code.

3. Database Friendly: Since the malicious code is removed
at the client end only, the database remains unaffected of
the attack.

Cons

1. Overhead : Since all the filtering is done at the client
end, the overhead before sending the data to the server
increases, thus the overall time for sending the request to
the server increases and hence the response time of the
web application gets delayed. This is a major issue as the
web applications are designed to be prompt and real-
time.

2. Extensive White-List Rules: It requires to have a detailed
white list of characters that can be allowed in the
database. Once the XSS filter is surpassed, there is no
additional security for existing server data. Also, a
restricted list would result in string-matching errors.

1.5.2 Server side Implementations

Pros and Cons of the server side implementations

Pros:

1. Less Initial Overhead: Since server side implementations
allow user to send the request without any filtering
whatsoever, the response time of the server does not take
a hit. Filtering is carried out as a separate thread in the
background and filtered responses are returned.

2. Existing data sanitization: The mechanism of server side
filtering involves separation of JavaScript from the
HTML code, and hence the existing code can also be
sanitized apart from the live incoming inputs.

Cons:

1. Database Overhead: Since this approach allows user to
input any data, genuine or malicious, the amount of data
present in the database may grow rapidly. Thus
increasing the efforts required to filter out malicious
code.

2. String-matching / Double Injection- Server side
implementations are prone to string matching issues as
the request parameters sent by the browser may be stored
differently at the server side (encoded). Also Double
Injection where a concatenated malicious code is sent
also needs to be flagged off.

2. CONCLUSION

The general idea of Web application, standards, and XSS
attacks was basically to provide a solution that can be
incorporated to avoid this attack effectively without the loss of
usability of web application. Use of web applications has
evolved and is still currently evolving very rapidly towards
offering fast services with the notion of usable security. We
describe a few of the client vs server side implementations of
mitigating these attacks. However, the need of the hour is to
make a solution that can be incorporated at both the ends,
without overloading the application. These loop holes have to
be covered at the very basic architecture level of the
application. Then only a client side or server side protection
will be useful. These problems can be solved with some new
standards, such as the CSP proposed by W3C. For the time
being, Web application vendors and developers can protect
their application by using common filters like the AntiSamy
Filter plus by providing an additional server filtering layer.
Where the response from the server can also be filtered in real-
time using similar policies as used by AntiSamy.

REFERENCES

[1] “World Wide Web Consortium (W3C)” http://www.w3.org/

[2] “Web Applications: What are they? What of Them?”
http://www.acunetix.com/websitesecurity/web-applications/

[3] “Cross Site Scripting Attack”:
https://www.acunetix.com/websitesecurity/cross-site-scripting/

[4] “DOM Based Cross Site Scripting or XSS of the Third Kind”
(WASC writeup), Amit Klein, July 2005
http://www.webappsec.org/projects/articles/071105.shtml

[5] ‘Types of Cross – Site Scripting”

https://www.owasp.org/index.php/Types_of_Cross-

Site_Scripting

[6] Kirda, Engin, et al. "Noxes: a client-side solution for mitigating
cross-site scripting attacks." Proceedings of the 2006 ACM

symposium on Applied computing. ACM, 2006.

[7] “OWASP AntiSamy Project”
https://www.owasp.org/index.php/Category:OWASP_AntiSamy_

Project

[8] Doupé, Adam, et al. "deDacota: Toward preventing server-side
XSS via automatic code and data separation." Proceedings of

the 2013 ACM SIGSAC conference on Computer &

communications security. ACM, 2013.

[9] Duraisamy, A., M. Sathiyamoorthy, and S. Chandrasekar. "A
Server Side Solution for Protection of Web Applications from
Cross-Site Scripting Attacks."International Journal of

Innovative Technology and Exploring Engineering, ISSN: 2278-

3075.

