
Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 10; October, 2014 pp. 69-86
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/jbaer.html

Language Independent Implementation of
Aspects in Aspect-Oriented Programming

Anita Bhatia

Dronacharya Institute of Management and Technology, Kurukshetra

Abstract: The term aspect-oriented programming (AOP) has
come to describe the set of programming mechanisms developed
specifically to express crosscutting concerns. Since crosscutting
concerns cannot be properly modularized within object-oriented
programming, they are expressed as aspects and are composed,
or woven, with traditionally encapsulated functionality referred
to as components. Many AOP models exist, but their
implementations are typically coupled with a single language. To
allow weaving of existing components with aspects written in the
language of choice, AOP requires a language-independent tool.
This paper presents Weave.NET, a load-time weaver that allows
aspects and components to be written in a variety of languages
and freely intermixed. Weave.NET relies on XML to specify
aspect bindings and standardized Common Language
Infrastructure to avoid coupling aspects or components with a
particular language. By demonstrating language-independence,
Weave.NET provides a migration path to the AOP paradigm by
preserving existing developer knowledge, tools, and software
components. The tool’s capabilities are demonstrated with
logging aspects written in and applied to Visual Basic
components.

Keywords: Aspect-oriented programming, Weave.NET, Common
Language Infrastructure, language-independence.

1. INTRODUCTION

Crosscutting concerns are “properties or areas of interest” [1]
that normally defy object-oriented (OO) modelling, because
the deployment of functionality to support them does not align
with the composition operations available in an object model
[2]. Even conceptually simple crosscutting concerns, such as
tracing while debugging and compiling, may lead to tangling,
in which the set of code statements addressing the crosscutting
concern become interlaced with those addressing other
concerns within the application.

“To eliminate this problem, AOP offers aspects: mechanisms
beyond subroutines and inheritance for localizing the
expression of a crosscutting concern.” [1] An aspect [3]
provides a unit of encapsulation that couples the behaviour of
a crosscutting concern with a join point specification that
details where in component code the behaviour is to be
applied. In the context of AOP, components [3] correspond to
units of well-encapsulated behaviour be it source code or

binaries. The aspects and components of an application are
composed, or woven, to produce a single program.

Unfortunately, none of these AOP technologies support
language independence, in this way they do little to present
the composition model as decoupled from source code, or
demonstrate by their implementation strategies and the ability
to intermix aspects and components written in a different
languages. AspectJ [4] views aspect and their implementation
as a Java coding exercise. As Aspects are only present in
source code, and after compilation they are no longer
discernable. By the researchers, extending this aspect model to
other languages is left as an exercise outside the AspectJ team,
and no alternate is made to allow reuse of aspects across
different languages. Demeter’s aspect model is based around
object graph traversal, which exists in most, if not all, object
models. Weave.NET exploits the multi-language support of
Microsoft’s Common Language Infrastructure (CLI) [5],
developed for the .NET Framework, to provide a solution for
these problems. Weave.NET is a language-independent aspect
weaver that avoids coupling aspects or components with a
particular language. Weave.NET performs binary-level
composition according to an XML-based composition script,
meaning that the composition specification is not written in
terms of, or using extensions to, a particular programming
language. The script is applied at load-time, well after
component and aspect behaviour is compiled to binary form.
As such, the weaver is oblivious as to the implementation
language of these behaviours.

2. PROGRAMMING MODEL

The Weave.NET programming model addresses two issues:
how to specify aspects, and what architecture is used to
compose those aspects with components. We provide an
introduction to both issues and then contrast the Weave.NET
approach to aspect specification in AspectJ.

2.1 Specifying Aspects

AspectJ syntax allows aspects to contain the same members as
Java classes in addition to a set of exclusively Aspect Oriented
(AO) constructs, such as point-cuts and advice; however,

70

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350

Weave.NET keeps AO constructs separate. In Weave.NET the
cross-cutting details of an aspect are written in an XML
deployment script. Non-AO type members,
behaviour of aspect advice, are obtained from an existing type
implementation.

Weave.NET allows aspect behaviour and components to be
implemented in any language that targets the CLI.
Weave.NET places the declarative elements of an aspect in an
XML file separate from source code. The declarative elements
reference binaries that implement aspect behaviour
target components are specified when the Weave.NET API is
called. Thus, aspect behaviour, as well as that of components
is compiled separately from the weaving process. The aspect
programmer can then choose a suitable implementation
language for aspect behaviour without affecting the ability to
apply that behaviour in a crosscutting manner.

2.2 Weaving Aspects

At the centre of the composition architecture is the
Weave.NET tool as shown in Figure 1. The input to
Weave.NET is an existing CLI binary component
as a .NET assembly, and an XML file containing the
crosscutting specifications of an aspect. The behaviour of an
aspect is provided separately in another assembly.
Weave.NET recreates the input assembly, but in this new
version join points are bound to behaviour in the aspect
assembly as per the advice statements in the XML. Unlike
.NET approaches that bind components and asp
proxies [6, 7], Weave.NET modifies the CIL of the
components to access aspect behaviour via method calls. As a
result, clients of components are unaffected by weaving and
weaving on call join points is fully supported.

Fig. 1. User-level view of weaving

2.3 Contrasting Weave.NET and AspectJ

Figures 2 and 3 contrast the approach to implementing a
logging aspect in AspectJ and Weave.NET respectively. We
start by explaining the aspect’s function using the AspectJ
example, and then review the Weave.NET implementation
looking for contrasts with the AspectJ approach.

Journal of Basic and Applied Engineering Research
Online ISSN: 2350-0255; Volume 1, Number 10; October,

Weave.NET keeps AO constructs separate. In Weave.NET the
cutting details of an aspect are written in an XML

, and indeed the
are obtained from an existing type

Weave.NET allows aspect behaviour and components to be
implemented in any language that targets the CLI.
Weave.NET places the declarative elements of an aspect in an
XML file separate from source code. The declarative elements
reference binaries that implement aspect behaviour, while the
target components are specified when the Weave.NET API is

as well as that of components,
separately from the weaving process. The aspect

programmer can then choose a suitable implementation
language for aspect behaviour without affecting the ability to

osition architecture is the
Weave.NET tool as shown in Figure 1. The input to
Weave.NET is an existing CLI binary component, packaged

and an XML file containing the
crosscutting specifications of an aspect. The behaviour of an

provided separately in another assembly.
but in this new

version join points are bound to behaviour in the aspect
assembly as per the advice statements in the XML. Unlike
.NET approaches that bind components and aspects via

Weave.NET modifies the CIL of the
components to access aspect behaviour via method calls. As a

clients of components are unaffected by weaving and

level view of weaving

Figures 2 and 3 contrast the approach to implementing a
logging aspect in AspectJ and Weave.NET respectively. We
start by explaining the aspect’s function using the AspectJ

review the Weave.NET implementation
looking for contrasts with the AspectJ approach.

Fig. 2. Interpretation of an AspectJ aspect.

Fig. 3. Weave.NET equivalent of Figure 2

Broadly speaking, the logging aspect is meant to report the
data being written to I/O by a terminal emulator package
called tcdIO. This I/O library was developed for introductory
OO and VB instruction [8], and is referred to in examples
throughout this paper. In the AspectJ implementation of
Figure 2, the body of an advice statement i

Anita Bhatia

10; October, 2014

Fig. 2. Interpretation of an AspectJ aspect.

Fig. 3. Weave.NET equivalent of Figure 2

the logging aspect is meant to report the
o I/O by a terminal emulator package

called tcdIO. This I/O library was developed for introductory
and is referred to in examples

throughout this paper. In the AspectJ implementation of
the body of an advice statement implements the

Language Independent Implementation of Aspects in Aspect

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350

aspect’s behaviour. Arrow 1 highlights how
references another member of the aspect type
print data to the logging output. The before advice is applied
to join points identified by the Write named pointcut
indicated by arrow 2. Write specifies an intersection of
execution join points specified with the execution and args
primitive pointcut designators The execution designator
identifies the output methods of a Terminal type
args designator selects from among these methods those that
take a single argument. args also exposes this parameter for
manipulation by aspect advice. Among the join points selected
is the execution of the WriteLine method as indicated by
arrow 3. At compile time, AspectJ composes t
component behaviour such that the execution of WriteLine
initially transfers control to the before advice,
arrow 4.

3. MAPPING THE ASPECT MODEL TO CIL

The aspect model in Weave.NET is derived from that of
AspectJ. In this section we summarize this model’s elements
and where possible, relate the elements to CLI architecture.

3.1 Join Point Model

The Weave.NET aspect model contains only dynamic join
points. Dynamic join points are “well-defined points in the
execution flow of the program” [9]. In contrast
points correspond to types to which new members can be
added. The focus on dynamic join points stems from their
identification as core to the AspectJ aspect model [9].

Dynamic join points are best understood by organ
into three categories: execution join points, call join points and
field access join points as shown in Table 1. This organisation
is show in AspectJ documentation [10] provides a better
characterisation of specific join point types.

Table 1 Categorization of dynamic join points

Join point category Join point types

Execution Method execution

 Initializer execution

 Constructor execution

 Static initializer execution

 Handler execution

 Object initialization

Call Method call

 Constructor call

 Object pre-initialization

Field access Field reference

 Field assignment

Language Independent Implementation of Aspects in Aspect-Oriented Programming

Journal of Basic and Applied Engineering Research
Online ISSN: 2350-0255; Volume 1, Number 10; October,

aspect’s behaviour. Arrow 1 highlights how before advice
references another member of the aspect type, LogWrite, to
print data to the logging output. The before advice is applied
to join points identified by the Write named pointcut, as

ated by arrow 2. Write specifies an intersection of
execution join points specified with the execution and args
primitive pointcut designators The execution designator
identifies the output methods of a Terminal type, while the

among these methods those that
take a single argument. args also exposes this parameter for
manipulation by aspect advice. Among the join points selected
is the execution of the WriteLine method as indicated by

AspectJ composes the aspect with
component behaviour such that the execution of WriteLine

, as visualised by

ODEL TO CIL

The aspect model in Weave.NET is derived from that of
on we summarize this model’s elements,

relate the elements to CLI architecture.

The Weave.NET aspect model contains only dynamic join
defined points in the

program” [9]. In contrast, static join
points correspond to types to which new members can be
added. The focus on dynamic join points stems from their
identification as core to the AspectJ aspect model [9].

Dynamic join points are best understood by organising them
call join points and

field access join points as shown in Table 1. This organisation
is show in AspectJ documentation [10] provides a better

egorization of dynamic join points

Method execution

Initializer execution

Constructor execution

Static initializer execution

Handler execution

Object initialization

initialization

Weave.NET execution join points correspond to blocks of
CIL. In a .NET assembly, CIL code is located on a method by
method basis. The assembly’s metadata
of IL code corresponds to which method signature. This is true
for constructors as well, since constructor bodies are modelled
as methods with special names, such as .ctor in case of an
instance constructor, and with certain metadata
distinguish them from other methods.

Fine grained join points are resolved by closer inspection of
the implementation of the method body. In the case of
exception handlers, extra metadata tables associated with the
method’s code identify blocks of exception handling code. For
execution join points related to object instantiation
necessary to examine the IL at the start of the constructor to
distinguish constructor execution from object initialization.
This is because data member initia
between different constructors in a class’ inheritance hierarchy
is written explicitly into each constructor method.

Fig. 4 An execution join point

To clarify the concept of execution join points
Figure 4 shows C# source code and corresponding IL of an
execution join point in the tcdIO library. The start and end of
the execution join point are identified relative to the CIL with
embedded comments in bold font.

Call join points are present on the calling side of
invocation or when the new operator is called for object
construction. These points are observed as IL opcodes of type
InlineMethod. These opcodes indicate the target method with
a metadata token. Using this token,
signature of the method being called. The signature also
indicates where on the stack the call context is located.

71

10; October, 2014

Weave.NET execution join points correspond to blocks of
CIL code is located on a method by

method basis. The assembly’s metadata identifies which block
of IL code corresponds to which method signature. This is true

since constructor bodies are modelled
such as .ctor in case of an

and with certain metadata flags used to
distinguish them from other methods.

Fine grained join points are resolved by closer inspection of
the implementation of the method body. In the case of

extra metadata tables associated with the
cks of exception handling code. For

execution join points related to object instantiation, it is
necessary to examine the IL at the start of the constructor to
distinguish constructor execution from object initialization.

lization and flow of control
between different constructors in a class’ inheritance hierarchy
is written explicitly into each constructor method.

4 An execution join point

To clarify the concept of execution join points, the example in
s C# source code and corresponding IL of an

execution join point in the tcdIO library. The start and end of
the execution join point are identified relative to the CIL with

Call join points are present on the calling side of a method
invocation or when the new operator is called for object
construction. These points are observed as IL opcodes of type
InlineMethod. These opcodes indicate the target method with

, it is possible to lookup the
gnature of the method being called. The signature also

indicates where on the stack the call context is located.

72

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350

Constructors present a special case. They may be accessed as
part of a call join point, for instance as part of a new operation
or they can be accessed as part of an execution join point
instance via this() and super() calls in Java. Fortunately
two cases are distinguished by the opcode used to access the
constructor, which is NewObj in the case of a constructor call
join point.

Fig. 5 A call join point

Revisiting the example in Figure 4, we can identify two call
join points. In Figure 5, we highlight the call join point for the
invocation of the WriteLine method in bold font.

The final category of join point is that of field access
corresponds to a read or write access to a data member
field in CLI terminology. These join points do not include
final fields, i.e. constant fields emitted as literals in IL. These
join points are observed as special IL opcodes used to access
static and non-static fields. These opcodes are associated with
a metadata token identifying the signature of the field being
accessed.

3.2 Identifying Join Points

To a large extent, the point of our aspect model is to allow
succinct identification of join points and expose portions of
their execution context. To do so, we adopt AspectJ’s pointcut
mechanism and its join point selection operators
primitive pointcut designators, used to specify pointcuts. A
pointcut selects from among all the join points in a component
those that are relevant to a particular crosscut. To do so it
relies on primitive pointcut designators that select from certain
join point types, as defined by that designator
metadata description matches the designator’s ar
Thus, this argument is usually a signature or type pattern
depending on the designator. Finally, several designators can
be used together with logical operators that take the union or
intersection of their join point sets.

Journal of Basic and Applied Engineering Research
Online ISSN: 2350-0255; Volume 1, Number 10; October,

Constructors present a special case. They may be accessed as
for instance as part of a new operation,

accessed as part of an execution join point, for
instance via this() and super() calls in Java. Fortunately, these
two cases are distinguished by the opcode used to access the

which is NewObj in the case of a constructor call

we can identify two call
we highlight the call join point for the

invocation of the WriteLine method in bold font.

The final category of join point is that of field access, which
corresponds to a read or write access to a data member, or
field in CLI terminology. These join points do not include

i.e. constant fields emitted as literals in IL. These
join points are observed as special IL opcodes used to access

static fields. These opcodes are associated with
a metadata token identifying the signature of the field being

the point of our aspect model is to allow
points and expose portions of

we adopt AspectJ’s pointcut
mechanism and its join point selection operators, called

used to specify pointcuts. A
nts in a component

those that are relevant to a particular crosscut. To do so it
relies on primitive pointcut designators that select from certain

as defined by that designator, those whose
metadata description matches the designator’s argument.

this argument is usually a signature or type pattern,
several designators can

be used together with logical operators that take the union or

Designators can be broken into three categories according to
the argument that they take. Table 2 identifies designators that
identify join points in control flow directly from signatures or
type patterns associated with the source of these join points.
Table 3 identifies designators that identify join points relative
to those of another pointcut. Finally
designators that select join points according to objects and
arguments used in the execution context of the join point.
These designators can also be used to expose the join point’s
execution context to the aspect.

Table 2 Designators specified with a signature or type pattern.

Designator Joint points selected

call(Signature) Method and constructor calls.

execution(Signature) Method and constructor
execution.

initialization Object initializer execution.

(Signature)

get(Signature) Field reference.

set(Signature) Field assignment.

handler(TypePattern) Exception handler execution.

staticinitialization Static initializer execution.

(TypePattern)

within(TypePattern) All join points defined by the
selected

 type.

withincode All join points defined within
method or

(Signature) constructor matching
declarations

Table 3 Designators specified with a pointcut.

Designator Joint points selected

cflow(pointcut) All join points encountered
during the

 execution of join points
identified by the

 pointcut.

cflowbelow(Identical to
include the

pointcut) join points identified by the
pointcut

 argument.

Anita Bhatia

10; October, 2014

broken into three categories according to
the argument that they take. Table 2 identifies designators that
identify join points in control flow directly from signatures or
type patterns associated with the source of these join points.

signators that identify join points relative
to those of another pointcut. Finally, Table 4 identifies
designators that select join points according to objects and
arguments used in the execution context of the join point.

d to expose the join point’s

Table 2 Designators specified with a signature or type pattern.

Joint points selected

Method and constructor calls.

Method and constructor
execution.

Object initializer execution.

Field reference.

Field assignment.

Exception handler execution.

Static initializer execution.

All join points defined by the
selected

type.

All join points defined within
method or

constructor matching
declarations

Table 3 Designators specified with a pointcut.

Joint points selected

All join points encountered
during the

execution of join points
identified by the

pointcut.

Identical to cflow, but does not
include the

join points identified by the
pointcut

argument.

Language Independent Implementation of Aspects in Aspect-Oriented Programming 73

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 10; October, 2014

Table 4 Designators that can expose execution context.

Designator Joint points selected

this(Join points in which the
object bound to

TypePattern or Id) this is an instance of a
particular type.

target(Join points in which the
object on

TypePattern or Id) which a call or field
operation is applied

 to is an instance of a
particular type.

args(Join points where there are
arguments

TypePattern or Id, whose types match those
listed by the

...) designator.

In the case of signatures and type patterns, Weave.NET
supports both name-based crosscutting and property-based

crosscutting [9]. Name-based crosscutting corresponds to the
literal expression of signatures and type patterns. Thus, with
name-based crosscutting the signatures and type patterns used
in a pointcut must match those of the targeted join points
exactly. The CLI provides the System.Reflection API to
access this data. Property-based crosscutting exploits
wildcards to partially specify designator arguments. In
property-based crosscutting, the signatures and type patterns
used in a pointcut correspond to regular expressions.
Fortunately, the CLI supplies a library to support regular
expression use that greatly simplifies resolving these
wildcards.

Pointcuts imply a traversal of all join points in the targeted
source code. The CLI provides limited tools for directly
accessing metadata, but none for accessing IL directly.
Fortunately, there is a performance-conscious library called
CLIFile Reader [11] that allows direct access to IL streams.

4. WEAVER IMPLEMENTATION

Weave.NET is an aspect weaver implemented as a .NET
component. Its weaving interface accepts as input a reference
to a component assembly and to an XML document that
contains the specification for an aspect. The result of calling
this interface is a new version of the component assembly that
is bound to aspect behaviour at the IL level.

The weaver implementation has two subsystems: code
generation and aspect modelling. The aspect modelling system
is responsible for interpreting the XML aspect specification,

modelling aspects in terms of their pointcuts and advice, and
detecting whether join points match any aspect advice. The
code generation system is responsible for converting an
existing assembly to a dynamic assembly and instantiating
objects to represent join points. The bridge between these two
systems is the JoinPoint class hierarchy.

4.1 Code Generation Architecture

The code generation system creates a dynamic assembly, i.e. a
System.Reflection.Emit object hierarchy, corresponding to the
assembly targeted for weaving. Were it not for the
modifications specified by the aspect, this hierarchy would be
emitted as a new, but functionally identical assembly.
However, as per the aspect, there will be some differences.
The principle classes used by the Emit library to model a
dynamic assembly are shown in Figure 6. Here, a module
corresponds to a physical file. Thus, an assembly can span
files. Types and their constituent members are contained in
one module or another.The System.Reflection API has been
suggested as a tool for introspecting on existing assemblies
[7], but, as noted previously, this API lacks the ability to
directly access the IL stream. Without access to IL it is
impossible to expose call join points, so the code generation
system bypasses the convenience of the Reflection library and
examines the assembly metadata directly with the CLIFile
Reader API [11. The CLIFile Reader library provides
abstractions to access intra-method details such as the IL
stream and exception handling table. Directly accessing the
file was considered, but CLIFile Reader provides
decompression, metadata table modelling and greatly
simplifies resolving cross-references within table entries.

Fig. 6 Dynamic assembly as modelled by Emit library.

74 Anita Bhatia

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 10; October, 2014

The major drawback with using CLIFile Reader is that the
metadata in a .NET assembly is organised on a module basis.
That is, type members are keyed with module-wide identifiers
that do not immediately identify their containing type. In
contrast, the Emit library expects a type to directly reference
its constituents. To bridge these two views, we introduce
wrappers for each object class in the Emit library hierarchy to
provide both views, as shown in Figure 7.

Fig. 7 Resolving Emit object hierarchy and CLI metadata
indexing.

In this system, conversion to a dynamic assembly requires a
complete traversal of the CIL of every method. This traversal
gives the code generation system an opportunity to expose
supported join points. The join points are modelled by the
class hierarchy defined in Figure 8, where JoinPoint and
JoinPointMethodSig are abstract classes. Currently,
Weave.NET only exposes call and execution join points. As
far as code generation is concerned, JoinPoint classes embed
aspect advice by marshalling parameters and then calling the
method that implements aspect advice. Embedding is
requested by the code generation system before and after it
emits the code corresponding to the join point. Separate
classes are required to model each join point type as the
opcodes required or marshalling parameters vary according to
join point type.

Fig. 8 JoinPoint class hierarchy.

Aspect instances are associated with class objects through a
field added during code generation. Proper instantiation of
aspect instances requires advance knowledge of which
component types are associated with which aspect instances.
Our single-pass weaver cannot determine this information in
advance, which leads to the addition of potentially unused
fields corresponding to aspect instances. Thus, our work on
aspect instantiation is incomplete.

5. CONCLUSION AND FUTURE WORK

In this paper we describe the operation of Weave.NET from a
programmer’s point of view, and provides details on the
underlying aspect model. The aspect model is drawn from
AspectJ, while language interoperability is based on the
Common Language Infrastructure (CLI) designed for the
.NET Framework. The crosscutting statements of the aspect
are written with an XML script based on the syntax of
AspectJ, and they apply behaviour from the aspect’s binary
component. The weaver is implemented with two subsystems,
one responsible for code generation and the other for aspect
modelling. Language-independence was verified in service-
side and client-side engineering scenarios. Specifically,
logging, written in Visual Basic code, was added to the
execution of methods in an I/O package written in Visual
Basic. Weave.NET’s CLI focus is shared by other
technologies, but these do not match its language-
independence capabilities. Neither do the implementations of
other popular aspect models.

Future work in Weave.NET will involve broadening its
crosscutting capabilities and reflection support to allow for
more interesting aspect behaviour. While the aspect XML
schema is complete, the full set of primitive pointcut
designators and advice statements are not supported, which
limits the effectiveness of our aspects. For example, our initial
assessment noted proper logging requires signature
specification be broadened to include accessibility modifiers.
Also, testing indicates the need to make available a metadata
object to provide aspects with reflective access to the join
point’s execution context.

Language Independent Implementation of Aspects in Aspect-Oriented Programming 75

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 10; October, 2014

6. REFERENCES

[1] Elrad, T., Filman, R.E. and Bader, A. “Aspect-oriented
Programming”. Communications of the ACM, 44 (10), pp.29-32,
October 2001.

[2] Booch, G. Object-oriented Analysis and Design with
Applications. Benjamin/Cummings, Redwood City, California,
1994.

[3] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C.V., Loingtier, J.-M. and Irwin, J., Aspect-Oriented
Programming. In The 1997 European Conference on Object-

Oriented Programming (ECOOP’97), (Jyväskylä, Finland,
1997), Springer-Verlag, pp.220-242, 1997.

[4] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and
Griswold, W.G., An Overview of AspectJ. In ECOOP 2001,
(Budapest, Hungary, 2001), Springer-Verlag, pp.327-355, 2001.

[5] ECMA International. Standard ECMA-335 Common Language
Infrastructure (CLI), ECMA Standard, http://www.ecma-

international.org/publications/standards/ecma-335.htm, 2003.

[6] Lam, J. Cross Language Aspect Weaving, Demonstration,
AOSD 2002, Enschede, 2002.

[7] Schult, W. and Polze, A., Aspect-Oriented Programming with
C# and .NET. In 5th IEEE International Symposium on Object-

oriented Real-time Distributed Computing, (Washington, DC,
2002), IEEE Computer Society Press, pp.241-248, 2002.

[8] Cahill, V. and Lafferty, D. Learning to Program the Object-

Oriented Way with C#. Springer-Verlag UK, London, 2002.

[9] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and
Griswold, W.G. “Getting Started with AspectJ”.
Communications of the ACM, 44 (10), , pp.59-65, October 2001.

[10] The AspectJ Team. The AspectJ Programming Guide (V1.0.6),
http://download.eclipse.org/technology/ajdt/aspectj-docs-
1.0.6.tgz, 2002.

[11] Cisternino, A. CLIFileReader Library, C# Source Code,
http://dotnet.di.unipi.it/MultipleContentView.aspx?code=103,
2002.

