
Journal of Basic and Applied Engineering Research 
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 10; October, 2014  pp. 85-88 
© Krishi Sanskriti Publications 
http://www.krishisanskriti.org/jbaer.html 

 

Nonlinear Electron Acoustic Waves via non Thermal 
Electron Distribution in Plasma 

Sona Bansal 

Sikh National College, Banga-144505(Punjab), 

sonabansal@yahoo.com 

 

 
Abstract: The effects of non thermal electron distribution on 
finite amplitude non linear electron acoustic waves is studied in 
an collisonless homogenous and unmagnetized plasma which 
consist of cold and hot electrons as well as ions. A nonlinear 
Schrodinger equation is derived to study the modulational 
instability of finite amplitude electronacoustic waves by using the 
standard reductive perturbation technique. It is found that the 
presence of nonthermally distributed electrons modifies the 
domain of the modulational instability and solitary structures. 
Possibility of stationary states of the wave packets that can 
appear as envelope solitons under different conditions is 
explored. The present investigation is relevant to observation 
from the Viking satellite in the dayside auroral zone. 
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1. INTRODUCTION 

Electron-acoustic wave (EAW) is an electrostatic (ES) wave, 
which had been first discovered experimentally [1-2]. It is a 
high frequency mode in plasma where a minority of inertial 
cold electrons oscillate against a dominant background of 
inertia less hot electrons. The latter provides the necessary 
restoring force while ion dynamics does not play any role 
except charge neutralization. The two populations are often 
referred to cold (hot) electrons with respective temperatures 
Tc(Th) and such plasma support electrostatic electron acoustic 
wave (EAW) as its natural mode. The propagation of electron-
acoustic wave (EAW) is only possible within a restricted 
range of parameter values. A more rigorous analysis (Tokar 
and Gary (1984); Gary and Tokar (1985); Mace and Hellberg 
(1990); Mace et al. (1999)) shows that EAW will e heavily 
damped unless Tc << Th and cold electrons represent a 
significant fraction of plasma .The plasmas with different 
temperatures and masses often occur in laboratory (Derfler 
and Simonen (1969). The wave dynamics of the EAWs has 
received a great deal of renewed interest because of its 
potential relevance in interpreting electrostatic component of 
the broadband electrostatic noise (BEN) observed in the cusp 
of terrestrial magnetosphere (Tokar and Gary (1984)), in 
geomagnetic tail(Shriver and Asour-Abdalla (1989)), in 
Auroral region, in the Earths bow shock, the heliospheric 

termination of shock as well as planetary and neutron star 
magnetospheres[4-7]. Satellite based observations provided 
abundant information that the localized electrostatic structures 
are of nonlinear type and solitary waves in plasma sheet 
boundary are the electron waves, possibly an electron acoustic 
solitary wave (EASW). Several studies on the nonlinear 
electron acoustic waves have been reported in the past (Buti 
(1980); Buti et al. (1980); Yu and Shukla (1983); Tagare et al. 
(2004)). From theoretical point of view, the large amplitude 
nonlinear waves for understanding BEN, were pointed by 
Mace et al. (1991). Dubouloz et al. (1991;1993) rigorously 
studied the BEN observed in the dayside of Auroral zone and 
explained duration burst of BEN in terms of EA solitary 
waves. Berthomier et al. (2000) pointed out that the positive 
potential structures are very important from the point of view 
of the interpretation of various ES structures observed in the 
auroral region at intermediate altitude by FAST, at higher 
altitude by POLAR and in geomagnetic tail by GEOTAIL[8-
12]. Berthomier et al. (2000) and Singh et al. (2001) have 
studied the electronacoustic solitons in four component 
plasmas. 

In most of the research publications mentioned above, hot 
electron component in two-electron temperature plasma was 
assumed to follow Maxwellian distribution. However, some 
recent observations show that the particles may not follow 
Maxwellian distribution. Such particle distributions are called 
non-Maxwellian type and based on the data, particle 
distributions are better modelled by velocity distributions 
having flat top with high energy tails[3]. These distributions, 
for example, nonthermal particles distributions have 
abundance of superthermal particles. Another type of non-
Maxwellian distribution extensively used in several 
investigations, is nonisothermal velocity distribution, resulting 
from the formation of phase space holes. Cairns et al. 
(1995a;1995b) were the first to explain the structure of solitary 
waves with density depression using nonthermal distribution 
for electrons. It has also been noticed that electron and ion 
distributions play a crucial role in characterizing the physics of 
the nonlinear waves and this motivated many researchers to 
study EASWs in a variety of plasma environments. Among 
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the best known paradigms used to study nonlinear behaviour 
are Korteweg-de-Vries (KdV) equation and its variants, or 
nonlinear Schrodinger equation (NLSE). Some form of 
reductive perturbation theory (RPT) is used to derive these 
equations. The KdV equation describes the evolution of the 
unmodulated wave and the bare pulse does not contain high 
frequency oscillations inside the packet. This special solution 
is also called KdV soliton, in which dispersion is compensated 
by the nonlinearity. On the other hand, NLSE governs the 
dynamics of a modulated wave packet. Here, the nonlinearities 
are in balance with wave group dispersion and the resulting 
solutions of NLSE possess envelope structures, known as 
envelope solitons[4]. 

For envelope soliton, there has been an increased interest in 
recent years on the investigation of modulational instability of 
different wave modes in plasma because of its importance in 
stable wave propagation. However, only a few investigations 
are reported for ion-acoustic mode [5-11]. It is further 
observed that EA waves being high frequency density waves, 
are trapped and modulated leading to modulation and 
generation of electron-acoustic envelope solitons. In high time 
resolution of the FAST observations, these kinds of nonlinear 
structures are observed [12]. Most of the investigations 
reported so far, have been restricted to modulational instability 
of ion-acoustic waves in plasma with two temperature 
electrons [7]. In the present investigation, we study the 
modulational in-stability of EA waves in plasma with 
nonthermal electrons. We have used the range of parameters 
of auroral zone plasma measured from Viking satellite 
[10,13]. Using the reductive perturbation technique, we have 
derived the NLSE, which governs the slow modulation of the 
wave amplitude. In Section 2, we have introduced basic 
equations governing the dynamics of EA mode and derived 
the nonlinear Schrdinger equation using reductive perturbation 
method. Stability analysis and discussion of the results are 
presented in the last section. 

2. BASIC EQUATION 

Since the plasma with two electron populations do occur 
frequently in laboratory and space, EA waves play an 
important role in such environments. We consider a 
collisionless infinite homogeneous and Unmagnetized plasma 
in a following model. The plasma fluid model consists of cold 
and hot electron components referred to here c and h 
respectively. The presence of two such population groups are 
necessary for the existence of EA wave (Tokar and Gary 
(1984); Gary and Tokar (1985)). The dimensionless fluid 
equations governing the dynamics of electron acoustic wave 
are given as follows: 

BCD
BE + B CDGD!

BH � 0     (1) 

BGD
BE + �J BGD

BH + KL �ML!NCD
O 	BCD

BH � P BQ
BH � 0  (2) 

BNQ
BHN � �

L �J + �R � S1 + �
LT   (3) 

where �R = (1 − UV + UVW)1Q, X = YZ
YD  and P = CZ[

CD[ , �J and 

�R are the normalized number densities of cold and hot 
electrons, respectively. ϕ is the normalized electrostatic 
potential, uc is the normalized velocities of cold electron in the 
x direction. x and t are also normalized. The normalization is 
as follows. 

The densities of cold and hot electrons are normalized by �J] 
and  �R]. The space coordinates x time t, velocity and 
electrostatic potential V are normalized by the hot electron 

Debye length  (,^=R/4a	�R]1W)�/W, inverse of cold electron 

plasma frequency	bcJd� = e(A/4a	�J]1W), 
5f = e(,^=R/PA), and 

ghYZ
f , respectively. Here m is the 

electron mass, e is the magnitude of the electron charge and 
KB is the Boltzmann constant. If we assume that the wave 
packet moves with the group velocity, which is determined by 
the linear dispersion relation of equations (1) - (3), then we 
introduce the following stretched variables by using the 
standard reductive perturbation method, as used by Taniuti 
and Yajima (1969): 

i = jk? − <l0m,     (4) 

n = jW0,      (5) 

where <l is the group velocity to be determined by the 

compatibility requirement. j is a small formal expansion 
parameter and is the measure of perturbation. The condition j ≪ 1 implies that the plasma dimensions must be much larger 
than the Debye length, which is satisfied in most cases of 
interest. We will assume that all perturbed quantities depend 
on the fast scale via the phase i = p? − b0 only, while the 
slow scales enter the argument of the lth harmonic amplitude, 
say for density as ��C. Following this prescription, the 
dependent variables are expanded as: �J 	= 	1 + ∑ ∑ jC∞��d∞∞C�� 	��C(i, n)	1q�(�HdrE) (6) 

�J 	= 	∑ ∑ jC∞��d∞∞C�� 	��C(i, n)	1q�(�HdrE)  (7) 

V	 = 	1 + ∑ ∑ jC∞��d∞∞C�� 	V�C(i, n)	1q�(�HdrE) (8) 

where �J,	�J,	V satisfy the reality condition �d�(C) = 	��(C)∗
 and 

asterisk denote the complex conjugate. Using (4) through (8) 
in (1) to (3) and collecting the terms of different powers of j, 
we get the reduced equations. For the first order (n = 1), we 
get 

−tb��(�) + tp��(�) = 0    (9) 

−tb��(�) + Kq�L
O (1 + P)W��(�) − tpPV�(�) = 0  (10) 
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(1 − U + pW)V�(�) + �
L ��(�) = 0   (11) 

Algebraic manipulations of these equations lead to the 
following dispersion relation 

bW =	 �N
�duM�N +	K�NL(�ML)N

O    (12) 

From (9) to (11), we can express the first order quantities in 

terms of	V�(�) as 

��(�) = 	−P(1 − U + pW)V�(�)   (13) 

��(�) = 	−P r
� (1 − U + pW)V�(�)   (14) 

For the second order (n = 2), reduced equation with 2 = 1, we 
get 

−tb��(W) + tp��(W) = 	<l BCv(v)Bw −	BGv(v)Bw   (15) 

−tb��(W) + Kq�L
O (1 + P)W��(W) − 	tpPV�(W) = 	<l BGv(v)Bw +

Kq�L
O (1 + P)W BCv(v)Bw + P	 BQv(v)Bw    (16) 

(1 − U + pW)V�(W) + �
L ��(W) = 	2tp	 BQv(v)Bw   (17) 

Using (13) to (17), we can put the second order quantities n(2) 

1 ,u(2) 1 in terms of V�(W) and 
BQv(v)Bw . Then, these are further 

algebraically manipulated and we obtain the following 
compatibility condition: 

<l = 	 �r x �du
(�duM�N)N + KL(�ML)N

O y	   (18) 

The second harmonic mode of the carrier, which comes from 

nonlinear self-interaction, is also obtained in terms ofzV�(�){W. 

The component l = 2 for the second order, n=2, reduced 
equations determine the second order quantities. They turn out 
to be 

�W(W) = |zV�(�){W     (19) 

�W(W) = x�r 	| + (1 − U + pW)WPW	y zV�(�){W  (20) 

VW(W) = xdN
}S~

�	�Mk�duM�NmNLNTd	�	y
W(�duM��N) zV�(�){W  (21) 

where 

| = 	 Lrk�duM�Nm
��� xP(1 − U + pW)(1 − U + 4pW) +

	�WLN
O (1 + P)(1 − U + pW)(1 − U + 4pW) + 	2P(1 − U +

pW)W + 	1y     (22) 

The nonlinear self-interaction of the carrier wave also leads to 
the creation of a zeroth order harmonic. Its strength is 
analytically determined by taking l = 0 component of the third 
order reduced equations i.e., for n = 2 , l = 0. The result is 
expressed in terms of the square of modulus of n=1, l=1 

i.e.,	zV�(�){W= V�(�)V�(�)∗ 

��(W) = �zV�(�){W     (23) 

V�(W) = −S �
�duT S^

L + 	1TW zV�(�){W   (24) 

��(W) = S�<l −	Wr� (1 − U + pW)WPWT zV�(�){W (25) 

where � =
	dL�N}~ (�du)k�duM�NmN�r��M	�}(v�})N~

� �MLk�duM�Nm(�du)M	��
��d(�du)���Nd	�}(v�})N~

� �� (26) 

Finally, substituting the above derived expressions into l = 1 
component of the third order (n=3) part of the reduced 
equation, we obtain the following nonlinear Schrodinger 
equation (NLSE): 

t BQB� + >	 BNQ
BwN + 	
|V|WV = 0   (27) 

where 

> = 	− K
W

��
r�(�duM�N)� x(1 − U) +	SKL(�ML)(�du)

O − �NL(�ML)
O 	T (1 −

U + pW)y      (28) 


 = 	 �
WLrN(�duM�N) �−�pb SP + �

(�duM�N)(�du) +	 WL(�du)
(�duM�N) +

�WLNk�duM�Nm(�ML)
O T −	pW| x �

(�duM�N)(�duM��N) + 	3P S1 +
�Lk�duM�Nm(�ML)

O Ty +
	3b(1 − U + pW)Wp S1 + WLk�duM�Nm(�ML)

O T + r�L(�MKu)
W(�duM�N) −

�Lr
(�duM�N)(�du) −	 �rSWLk�duM�NmNd�T

W(�duM�N)(�duM��N)	�  (29) 

In the NLSE (27), we have replaced V�(�) by V for the sake of 

notational convenience. 

3. STABILITY ANALYSIS AND DISCUSSION 

In the standard stability analysis, we linearize around the 
monochromatic wave solution of the NLSE and modulation on 
the wave amplitude takes place in the propagation direction. 
Therefore, we separate the amplitude V into two parts as 
follows: V = 	 �V� + 	�V(�)�1(dq∆�)    (30) 
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where ζ = ki − Ωnis the modulational phase and 0 < K << k 
and	Ω << ω are respectively the wave number and frequency 
of modulation.	V� is the amplitude of pump carrier wave, �V 
<<V�  small amplitude perturbation and ∆ is a nonlinear 
frequency shift. Substituting (31) into (27) and collecting the 
terms of same order, we obtain 
∆ = 	−
|Φ�|W     (31) 

and 

t BQB� + >	 BNQ
BwN + 
|Φ�|W	(�V + 	�V∗) = 0  (32) 

where	�V∗  is complex conjugate of �V. On assuming that the 
amplitude perturbation varies as exp �t(pi − Ωn�and 
following the standard procedure [30], after simplification we 
get 

ΩW = >,W(>,W − 	2
|V�|W)   (33) 

Equation (33) is nonlinear dispersion relation for the 

amplitude modulation. It is apparent from this relation that	ΩW 
> 0 for all k > 0 whenPQ < 0. In this case			Ω is real and waves 

are stable. However, when PQ > 0, ΩW < 0 then K2 < 
(2Q/P)|VW|2 and waves are modulationally unstable. The 

maximum growth rate is obtained for , = e|
/>||Φ�|	and is 

given by	���H = �A(Ω)��H = 
|VW|2 . It is seen that 
instability sets in for perturbation wave length λ > �J , where 

�J = 2a ,J� and  ,J = e|>/
||Φ�|. Now we discuss the 

possible localized solitary wave solutions of (27). Since the 
wave packet can be stable or unstable in different conditions 
of θ , k , σ, β and α.  P and Q can both be negative or they can 
have different signs. The latter condition implies two types of 
stationary solutions of NLSE. To obtain the profile in both 
cases, let us put V = 	�(�, n)1�q�(�,�)�    (34) 

where ρ and σ are two real variables. Substituting (34) into 
(27) and separating the real and imaginary parts and solve the 
resulting equation for ρ and σ. In case of modulationally 
unstable wave with P and Q having the same signs, we obtain 
the following envelope soliton solution 

V(i, n) = 	��%15ℎ � �
W ¡¢£¡ ���¤   (35) 

where	��	is constant and represents the nonlinear maximum 
amplitude. On the other hand with P and Q having the 
opposite signs, we have modulationally stable wave and obtain 

�(i, n) = 	�� �1 − ¥W%15ℎW � ¦v
W ¡¢£¡ ¥���

�/W
  (36) 

where 1 ≥ ¥W = 	��W −	(��W )��W, ��is a constant. Equation (36) 
represents an envelope hole sometimes called a dark soliton. 
Such solution corresponds to the accumulation of density in a 
region where wave intensity is very low. The parameter b 

determines the depth of the modulation. Further, when b = 1, 
we have 

�(i, n) = 	��0)�ℎ � ¦v
W ¡¢£¡ ¥��   (37) 

which is known as envelope shock. Coefficients P , Q of 
dispersion and nonlinear terms respectively are the functions 
of θ, nonthermal electrons distribution parameter β, ratio of 
hot electrons to cold electrons density a and wave number k. 
Therefore, one expects that θ and β will affect the unstable 
characteristics. We have chosen the following 

parameters:		�J� = 0.55AdK �R� = 2.55AdK	U = 0,0.4,0.9 
These parameters are within the range of observations from 
Viking satellite in the dayside auroral zone [10].It is 
noteworthy that wave packet will be unstable at higher wave 
numbers (k > 0.6) and at higher=J 	/=R.  

The critical value of k for the onset of instability is lowered 
with increase of relative temperature =J 	/=R.This feature 
obviously highlights the crucial role of nonthermal electrons 
distribution as a major contributing factor to cause the 
modulational instability. In summary, a NLSE has been 
successfully derived to described finite amplitude EAW in a 
plasma composed of cold and hot electrons and stationary 
ions. The existence region of modulational instability of EAW 
has been investigated and the condition for appearance of MI 
has been given, that is, PQ > 0 and k > 0.6. The present study 
gives a simplified picture to understand the nonlinear 
phenomenon for the modulated EAW in plasma containing 
nonthermal electrons. 
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