
Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 10; October, 2014 pp. 65-79
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/jbaer.html

Survey of Fitness Function Improvement for
Unstructured Programs

Vivek Vashishta

Northern India Engineering College, GGSIPU, Dwarka, New Delhi, India

Abstract: Automated testing technique has decreased the testing
effort required to generate test data. The Evolutionary Algorithm
uses fitness function to find the best suite of test data and hence
guide the search process. But, unstructured program creates
problem in the execution of Evolutionary Algorithm. The goal of
this paper is to review some of the verified technique to
transform the program in the structured way for better search
guidance. The paper involves Boolean, exit, flag and &&
containing unstructured program and show their transformation
methods. This leads to decrease in testing time, cost and make
process less error prone. In this paper the software metrics
values of the transformed and untransformed programs is
compared and final conclusion is made to verify the low testing
effort required for transformed program.

Keywords: Transformation, Fitness Function, Evolutionary
Algorithm.

1. INTRODUCTION

Testing plays crucial game in software verification process.
However, it consumes resources like time and cost.
Generating test using test criteria means for a set of test input
to be sufficient. There are two classes of test criteria [3]: white
box which depends on the structure of code and black box
which depends on functionality of code. The goal of tester is
to find the test data for test criteria. But it is tedious, time
consuming and error prone process when done manually. So,
automatic test data generation tool become the topic of
interest. But, unstructured program creates problem for all
automated test data generation. The goal of this paper is to
show some of the methods to decrease the effect of
unstructured program on test data generation.

High structural coverage of software is providing by
Evolutionary Algorithm for specific test data. The necessary
condition of Evolutionary Algorithm is the effective fitness
function which gives better guidance in finding the search
result. Evolutionary Algorithm is used for generating test data
since they are applicable to differentiate different types of
problems [10]. Evolutionary Algorithm works on the basis
Darwin biological theory of evaluation. The overview of
Evolutionary Algorithm is given below.

Evolutionary Algorithm for Test Data Generation [10]

BEGIN
INITIALISE population with random candidate solutions;
EVALUVATE each candidate;
REPEAT UNTIL (TERMINATION CONDITION is satisfied)
DO
1 SELECT parent;
2 RECOMBINE pairs of parents;
3 MUTATE the resulting offspring;
4 EVALUVATE new candidates;
5 SELECT individuals for the next generation;
END

The algorithm works on the basis of Darwin theory where all
the initial test data is taken as population. The goal of
algorithm is to find the best suit of test data to accomplish the
task. Various processes have been applied to filter the test data
like mutation, combination and then the most suitable
generation is selected.

Unstructured program gives output in terms of 0 and 1, which
gives no guidance for test data generation. Evolutionary
Algorithm takes help of transformed fitness function for
finding the desired test data for the search guidance. Fitness
function used in Evolutionary Algorithm to optimize the
solution and give better result for search guidance. Different
fitness functions emerge for search guidance through which
test goal persuade. For example if a program has branch
condition x==y the fitness function is |x-y| [11]. In node
oriented method the fulfillment of aim is independent of part
executed in control flow graph .The fitness function consists
of approximation level and branch distance [10].
Approximation level: this metric assess how close and
individual was to reaching the target on the basis of its
execution part through control structure [10]. For a program,
the flow is shown by arrow and the node represents the action.
In the control flow graph, critical branch is simply a branch
which leads to the target being missed. The second component
of fitness function is branch distance. It is computed when
control flow diverged away from the target down a critical
branch [10]. The Control Flow Graph [3] for a program

66 Vivek Vashishta

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 10; October, 2014

consists of directed graph ‘G’. The vertices represent the
statement and directional flow is represented by edges. It is
used to find the approximation level and critical branch of a
program.

This paper focuses on presenting the transformation of
unstructured programs into structured way through earlier
verified techniques so that it gives some search guidance for
Evolutionary Algorithm. The paper is organized as follows:
section 2 describes the short circuit condition, section 3
describes flag condition, section 4 describes exit condition,
section 5 describes the Boolean variables condition and
section 6 presents the conclusion of paper.

2. SHORT CIRCUIT CONDITION

The main goal of fitness function is to find test data that suits
test criteria. The goal of fitness function is to increase the
chance of finding the solution and to give better guidance of
the search to optimize it. Modifying the branch condition can
improve the fitness function for the search [4].

To keep side effect unchanged the fitness function takes
account the executed part result only. In the code given below,
the true value depends upon the true value of all sub atomic
elements in the expression [4].
if(a==0 && b==0 && c==0 && e==0 && f==0)

Example 1: Short Circuit Condition having && operator

There is low probability of coming solution by which fit all
condition in expression. When one atomic condition is
executed the chance of next condition to be fit decreases so
there is need of conversion of expression in the effective way.
The author [4] has given a solution to change the statement in
another way which preserves functionality and make fitness
function guidance better.
If (a==0) {
If (b==0) {
If (c==0) {

Example 2: Transformation of Example 1 in the form of
“if loop”

In this method the evaluation of inner if statement earlier will
lead to improvement mentioned in example 1. Calculation of
all condition then prior to first then if statement with this the
search of fitness function in process to perform better than that
of 1. This leads to more guidance for test data generation.

3. FLAG CONDITION

Search based technique has difficulties in the branch coverage
of last line as it is dependent of flag value in the code. The
code is transformed in such a way to remove the flag problem.

Evolutionary algorithm is used to search the output domain of
the test object for desired test data.
1: flag=false;
2: if (a==0) flag=true;
3: ... /*
4: if (c == 4) {
5: if (flag && b> c)
6: /* test aim */

The execution of test aim on line 6 is depending on the
condition of 2. The original approach searches for :
 “c==4” and “flag=true && b>c”.

This is created by the control dependency of the if-statements
of line 4 and 5. Because of the last condition containing a flag
an Evolutionary Testing behaves like a random search. The
author [5] used the new fitness function for the better search
algorithm in the test data.

The author [5] used the use definition analysis where the test
aim is split into two node, first is the analysis node 2 and
second is the node 5 for test aim. The improvement searches
for
“a==0” and “c==4” and “flag=true && b>c”

The first part is created by the control dependencies for the
flag assignment of line 2 and the second part by the control
dependencies for the test aim. This new fitness function
directs the search to “a==0” in the first instance, automatically
resulting in fulfilling the flag condition. This improves the
guidance of the fitness function.

4. EXIT CONDITION

Test data generation is the interested research topic. But
unstructured programs create problem for automated test data
generation. An unstructured program is the one which contains
goto, return, flag, exit statement. In Genetic Algorithm, the
test criteria is transformed to fitness function which evaluates
how close the input comes to execute the desired branch. But
the presence of unstructured program does not lead to the
effective guidance of Genetic Algorithm.

When program has exit statement, it has two way of
terminating the program through normal or through exit way.
However, the test data generation will not know which of two
ways will likely to give the desired output. So, there is need of
transferring the program in the way to have single termination
way.

For a transformed program the 100% branch coverage criteria
is followed when an unstructured program p is transformed to
structured program p’ such that any input gives 100% branch
coverage for p’ also provides for p [3].

Survey of Fitness Function Improvement for Unstructured Programs 67

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 10; October, 2014

Branch coverage is computed using the set of test input and
program under consideration. For example, the following
program shows the transformation of multi exit statement into
single exit statement.
while P do
S

if P_ then
S1;
exit n;
S2;
else
S3;
exit n;
S4;
fi
S5;

Example 3: Program with multiple exit statement

This is branch-coverage equivalent to the following program
that contains only one exit statement in its loop [3].
while P do
S

if P_ then
S1;
else
S3;
fi
exit n;
S5;

Example 4: program with single exit statement

The author [3] has given a set of rules for transforming the
program having multiple exit statement to single or none exit
statement using skip method. The program is transformed
using depth function which gives the value of exit level in the
code and a respective transformation is applied on it.

The transformed program should follow the functional
preservation of original unstructured program.

5. BOOLEAN VARIABLES

Test data generation through Evolutionary Algorithm search
strategy to evolve candidate solution is the key component of
Evolutionary Algorithm. Fitness function should be able to
identify the best candidate and give guidance for the random
search. For a case having output in the form of Boolean where
either true or false is output. The Evolutionary Algorithm
becomes random search. The author [1] gives new fitness
function for better solution of the search.
public boolean isClosed()
{
If(size>= maxsize)
return 0 ;

else
return 1;
}

Here the isClosed method gives either true or false output and
hence the Evolutionary Algorithm search becomes the random
search.

The author [1, 2] gives better function by showing the value
by which the wrong value diverted from the original required
value and hence the new code for function is:
f(isClosed()) = f(size >= maxSize)
=0 if (maxSize - size)≤ 0
Else
maxSize − size

The above mentioned code will give the direction to
Evolutionary Algorithm for finding the search guidance and
performs better than the earlier one.

6. COMPARISON OF SOFTWARE METRICS AFTER
TESTABILITY TRANSFORMATION

To accomplish the goal of studying the effect of
transformation on software metrics, I took a set of programs
having flag problem and transformed them into the flag free
version through the renowned approach of Harman [6] and
Wappler [10]. I computed the software metrics of the program
before and after transformation and noted down the results.
Table 1 shows the computed result of metrics for the
transformed version of program where ‘↑’ shows increase in
the values of the metric and ‘↓’ shows decrease in the value of
metrics.

Table 1: Metrics comparison after program transformation

LO
C

Stateme
nt

coverag
e

Bran
ch

Meth
od

/class

Stateme
nt

/method

Maximu
m

complex
ity

Maximu
m

Depth

↑ ↑ ↓ ↑ ↑ ↓ ↑

The tool used for the metric calculation is the Source Monitor
[13] which computes all the relevant metrics of an
unstructured c/c++ program. The tool is compatible with any
version of operating system and it is freely available.

Analyzing the result through the source monitor tool, I found
that the complexity of program decreases in the transformed
program. Khalid [12] explained the relation between the
complexity and testability in the paper. The paper states that
the complexity of a program is directly proportional to the
testing efforts. The more complexity the more testing effort
required and less testability of the program.

68 Vivek Vashishta

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 10; October, 2014

Seeing the result of Table 1 I come to the conclusion that the
complexity of transformed program decreased and hence its
testability increases. The above result validates the
transformed version attribute of the program.

7. CONCLUSION

Unstructured program containing flag, Boolean, exit and &&
operator degrades the performance of Evolutionary Algorithm.
In this paper I presented transformation method of these
unstructured functions as given by earlier researchers.
Different methods are applied to transform the different kind
of unstructured program to improve the fitness function.
Comparing the software metrics value of transformed and
untransformed program I come to the conclusion that
transformed programs need less testing efforts. The improved
fitness function leads to better search and give more search
guidance for the test data generation. The improved
Automation search through improved fitness function gives
fast and accurate search method which assists the software
developer to test their data fast.

REFERENCES

[1] Cheon, Yoonsik, and Myoung Kim. "A specification- based
fitness function for evolutionary testing of object-oriented
programs." Proceedings of the 8th annual conference on Genetic

and evolutionary computation. ACM, 2006.

[2] Cheon, Yoonsik, and Kim Myoung. "A fitness function for
modular evolutionary testing of object-oriented programs."
(2005).

[3] Hierons, Robert M., Mark Harman, and C. J. Fox. "Branch-

coverage testability transformation for unstructured programs."
The Computer Journal 48.4 (2005): 421-436.

[4] Baresel, André, Harmen Sthamer, and Michael Schmidt.
"Fitness Function Design To Improve Evolutionary Structural
Testing." GECCO. Vol. 2. 2002.

[5] Baresel, André, and Harmen Sthamer. "Evolutionary testing of
flag conditions."Genetic and Evolutionary Computation—

GECCO 2003. Springer Berlin Heidelberg, 2003.

[6] Harman, Mark, et al. "Testability transformation." Software

Engineering, IEEE Transactions on 30.1 (2004): 3-16.

[7] Binkley, David W., Mark Harman, and Kiran Lakhotia.
"FlagRemover: A testability transformation for transforming
loop-assigned flags." ACM Transactions on Software

Engineering and Methodology (TOSEM) 20.3 (2011): 12.

[8] Gong, Dunwei, and Xiangjuan Yao. "Testability transformation
based on equivalence of target statements." Neural Computing

and Applications 21.8 (2012): 1871-1882.

[9] Li, Yanchuan, and Gordon Fraser. "Bytecode testability
transformation." Search Based Software Engineering. Springer
Berlin Heidelberg, 2011. 237-251.

[10] Wappler, Stefan, Andre Baresel, and Joachim Wegener.
"Improving evolutionary testing in the presence of function-
assigned flags." Testing: Academic and Industrial Conference

Practice and Research Techniques-MUTATION, 2007.

TAICPART-MUTATION 2007. IEEE, 2007.

[11] Korel, Bogdan. "Automated software test data generation."
Software Engineering, IEEE Transactions on 16.8 (1990): 870-
879.

[12] Khalid, Sadaf, Saima Zehra, and Fahim Arif. "Analysis of object
oriented complexity and testability using object oriented design
metrics." Proceedings of the 2010 National Software

Engineering Conference. ACM, 2010.

[13] www. sourcemonitor.com.

