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ABSTRACT 

Many electron correlations in stage-1 graphene intercalation compounds GICs are studied in 

generalized random-phase-approximation. With this approximation, we are able to study short 

range exchange and correlation effects in GICs. These exchange correlations leads to BCS 

superconducting states in which one electron correlates with another via its correlation hole to 

form a stable pair of electrons known as Cooper pair. Cooper pair energies are calculated as the 

excitations in S(q,ω) following a method similar to exciton energy calculations. Short range 

effects governing local field correction G(q,ω) are studied valid for all wavevectors and 

frequencies. We have found a reasonable agreement between our results and the earlier 

theoretical results. 
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1. INTRODUCTION 

There have been made many efforts to understand the many electron correlations within a short 
range r=0 known as short-range correlations in uniform electron gas1,2. Basic assumption is that 
exchange-correlation effects leads to a local depletion in the density around each electron. The 
effective field acting on an electron differs from the macroscopic mean field which led to the 
concept of local field correction. Here we have studied short-range correlations in stage-1 graphene 
intercalation compounds (GICs) which is considered as layered massless-Dirac Fermion gas 
(MDF) in generalized-random-phase-approximation3,4.  

We use many electron correlation function to study exchange-correlation effects in GICs2. This 
describes interaction between the first particle and all surrounding particles in presence of the 
second particle. This can be considered as an electron occupying a state k↑ interacts with second 
electron occupying a state -k↓ attractively via its correlation hole to which it is bound (known as an 
exciton) at r=0. This forms a stable cooper pair in the BCS superconducting state which is lowered 
in energy than normal state by an amount the binding energy of Cooper pair5. An exciton can 
therefore form Cooper pairs with all surrounding ones. 
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We consider GICs as type-II superlattices3,6 with graphene-intercalant hetrojunction consisting of a 
spatial separation and confinement of electrons and holes with a typical carrier density ~ 1012 cm-3. 
Such a high carrier density is achived by a charge transfer across graphene-intercalant 
hetrojunction due to unusual line up of bulk energy bands. Electrons released by donors drop into 
the potential wells of graphene host. The one dimensional potential well acts as a superconducting 
channel for Cooper pairs which quantize the electronic motion along superlattice direction. With 
increase in the carrier density graphene conduction band split into a series of sub-bands and the 
band degeneracy around Fermi energy is removed. There exists an energy gap which increases with 
increase in the degree of charge transfer. Each sub- band acting as a superconducting channel 
represents free-effective-mass type electronic motion in the plane perpendicular to the superlattice 
direction. At low temperatures T→0 only the lowest sub-band is occupied and the superlattice can 
be considered as Bose-Einstein condensate (BEC) in which paired electrons exhibit bosonic 
characteristics. 

In this paper we have developed the dielectric function for GICs in generalized-random-phase-
approximation4,2. Numerical calculations are made to explore the superconducting energy states 
which gives Cooper pair energies and to study short range local field correction. 

2. GENERALIZED-RANDOM-PHASE-APPROXIMATION 

2.1 Dielectric Function  

We consider GICs as type two superlattices comparised of massless Dirac fermion gas MDF3. 
Excitons so formed are free particles, mutually interacting by Coulomb potential e2/r. At T→0K 
graphene intercalant sublattices can be treated individually (by neglecting c-axis couplings). This 
gives density of host D(EF)=gvgs |2EF |/ √3γ2

0, which vanishes as EF→0 at T→0K. This is an 
universal feature of all low dimensional materials.  

This is also a characteristics feature of a superconductor where energy gap is centered at the Fermi 
level5. Thus at absolute zero no current can flow until the applied voltage is Eg/2e=∆/e, where Eg is 
the energy gap in the superconducting state. The energy gap corresponds to the break-up of a pair 
of electrons in the superconducting state with the formation of two electrons, or an electron and a 
hole in the normal state. The current starts when eV=∆. 

In generalized-random-phase-approximtion2,4 dielectric function of GICs can be obtained by 
solving equation of motion for many particle distribution function 

ε&'()*+,ω. = ε/*+,ω. + ε1*+,ω.+ε/21*+,ω.,																																																																																					*1. 
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which is the sum of dielectric function due to induced potential, dielectric function due to screening 
potential, and dielectric function due to equal time correlation potential between two particles in 
presence of all surrounding ones. We have 

ε/*+,ω. = 1 − v*+.S*+, k7. g9g1S : f=̅"+,>?11?� − f=̅2+,>?11?�
E1?= − E1=2+ +ω × |c1=2+C

>>?11?
, c1?=|� 

+ε1*q,ω. = 1 − v*+.S*+, k7.χ*q,ω.,	  
+ε/21*+,ω. = 1 − v*+.S*+, k7. g9g1S : f=̅"+,>?,>"11?G − f=̅2+,>?,>"11?G

E1?= − E1=2+ +ω 																																											*2.
>>?11?

 

where v(q)=2πe2/εοq is the Fourier transform of the two-dimensional Coulomb potential, 
S(q,kz)=2/qIc for kz=0 and qIc/2 for kz=π/Ic is the structure factor where kz is confined to the first 
Brillouin zone. ss′=±1 are the band indices for conduction and valance bands respectively. gvgs=2 
are the spin and valley degeneracies and S is the sample area. Polarization function χ(q,ω) for large 
q is given by 
χ*+, ω. = χI*+,ω.[1 + v*+.K1 − G*+,ω.M]χI*+, ω.,																																																																																																												*3. 
which arise as a constant of proportionality and is independent of the number of layers in GIC’s. 
Free particle polarizability is given by 

χI*+,ω. = 1
S:

f1?=I − f1=2+I
E1?= − E1=2+ +ω=11?

|c1=2+C c1?=|�,																																																																														*4. 

which describes the effect of polarization of free excitons such that f0
s′k=1,0 for conduction and 

valence bands respectively. f2
kk′ss′ and f3

kk′k″ss′ are the two and three particle distribution functions. 
|c†

sk+qcs'k|
2=[1+ss'cos(θk-θk+q)]/2 are the Coulomb matrix elements. It is a measure of transition 

probability in a given direction. As ↑k→-↓k, the Coulomb matrix elements vanishes and indicates 
that the two electrons cannot have the same quantum state in accordance with Pauli’s exclusion 
principle. The polarization function vanishes and exciton is unstable with respect to radiative 
recombination in which the electron drops into the hole in the valance band and there is an absence 
of backscattering in GICs. 

2.2 BCS Superconducting States 

 The response to an external perturbation which varies rapidly in space is determined by the free 
particle behavior. This is because a free particle travels a certain distance before it is affected by the 
presence of other particles. In fact when two electrons form a Cooper pair their mutual interaction 
dominates over the interactions with the surrounding particles. It is then sufficient to solve two-
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body problem included in εs(q,ω). The superconducting states can be obtained as transition peaks 
in S(q,ω)3,7  

S*+,ω. = − 1
QR*S.T*S, UV. Im Y 1

ε1*+,ω.Z																																																																																														*5. 
In fig. 1 (a) we have a plot of Im[-1/εs(q,ω)] versus ω at selected q. This gives superconducting 
states in the two coupling limits determined by structure factor S(q,kz). The minimum threshold for 
the super current to flow is ∆~0.2eV with forbidden intraband transitions v→v or c→c because of 
vanishing polarization function at q=2kF. This requires a removal of band degeneracies around the 
Fermi point so that all interband transitions v→c separated by an energy gap are allowed. In fact, 
charge transfer in GICs increases with the applied voltage and energy gap depends on the degree of 
charge transfer. 

  

Figure. 1- (a) A plot of Im[-1/εs (q,ω)] versus ω representing BCS superconducting  state at 
selected q near  the upper edge of the weak coupling limit. (b) A plot of Im[-1/εs(q,ω)] versus 
ω representing BCS superconducting state at selected q in the strong coupling limit. (c) A 

plot of two-dimensional broadening obtained from curve (a). (d) A plot of two-dimensional 
broadening obtained from curve (b). 



Many Electron Correlations in Stage-1 Graphene Intercalation Compounds 

Advances in Applied Physical and Chemical Sciences-A Sustainable Approach - ISBN: 978-93-83083-72-5 63 

Near the upper edge of weak coupling kz=π/Ic we have found an interband transition at 1.5eV 
corresponding to the interband threshold of 1.47eV in C6FeCl3. This difference in energies~-
0.03eV gives cooper pair energy. Compaired with exciton energies cooper pair energy is negative. 
This is expected because a free exciton on acquisition of energy interacts with another one in the 
normal state to form a Cooper pair in the superconducting state. Energy released during this 
process is the binding energy of Cooper pair. Thus superconducting states at small energies are 
exceptionally stable at T→0, where MDF gas in GICs exhibits three-dimensional behavior with q-4 
dependence. In fig. 1 (b) we have shown a superconducting energy state corresponding to the 
interband threshold of 5.47eV in C6FeCl3 in the limit of strong coupling kz=0. We have found an 
interband transition at 5.5eV and the binding energy of the cooper pair is ~ -0.03eV which is same 
as the weak coupling case. A large energy gap causes few free carriers to make interband 
transitions. At high energies these free carriers involves multiple collisions. Each collision causes a 
free exciton and a covalent bond is broken. The number of Cooper pairs formed however are small 
as compaired to number of free electron-hole pairs formed in multiple collisions which results the 
Zener breakdown with further increase in energies. GICs are therefore superconducting within a 
certain (1.5eV to 5.5eV) range of applied field which is a characteristics of type-II superconductor. 
It should be noted that the interband threshold values for GICs varies from sample to sample. In 
fig. 1 (c) and 1 (d) we have shown a plot of two-dimensional broadenings obtained from 
superconducting states (a) and (b). Broadening here corresponds to electron-hole pairs in the 
normal state and free electron pairs in BCS superconducting state. This is a consequence of the 
layered structure of GICs. 

 The intrinsic length5 ξ0 can be obtained in terms of modulated density distribution ξ0 =1/q0, where 

qI = 2m∗E\
ℏ=^ = E\

vI 																																																																																																																																		*6. 
This gives ξ0 =500×10-8m with Eg=1.47eV and ξ0 =118×10-8m with Eg =5.47eV, in the limits of 
weak and strong couplings respectively. Intrinsic length shows a decrease with increase in 
interband threshold. The superconducting electron concentration cannot change drastically at low 
energies and GICs are characterized by a stable superconducting state. The intrinsic coherence 
length can be compaired with graphene bilayer~10-8 m measured from central Dirac point8. The 
penetration depth λL= (m*c2/4πne2)1/2 assume a value~6.42×10-3cm. This gives κ= λL/ ξ0=12 and 54 
at 1.47eV and 5.47eV respectively. This further indicates GICs are type-II superconductors for κ>1 
in the energy range of interest. At small incident energies and at T→0 only the lowest sub-band is 
filled and MDF gas forms the so called Bose-Einstein Condensate in which paired electrons (by s-
wave pairing the simplest case considered) exhibit bosonic properties. With increase in charge 
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transfer a vortex state is formed in GICs which provides stable superconducting channels. 
Transition temperature for C6FeCl3 can be obtained in BCS theory ∆=1.76kBTc=0.48K-1.80K with 
kB=0.8625×10-4 eV in the energy range of interest9. 

3. LOCAL FIELD CORRECTION  

If the external field varies rapidly in space and time the response of the system is determined by the 
motion of particles for short times as they travel certain distance before being affected by the other 
ones. In BCS state it requires that a spin up electron is at r if a spin down electron is at r=0. Of 
course, electrons are not fixed, and are usually moving rapidly. Even the electron at r=0 is not 
fixed, it is assumed that the reference point moves with the electron. Pair distribution function 
therefore averages for moving paricles and in the Hartree-Fock approximation g↑↓=g↓↑=1/2=g(0). 
In GICs the lowest energy state is at T→0, which is the state with some correlation between the 
motion of the electrons with anti-parallel spins. The basic process takes an electron from below to 
above the Fermi level. It leaves a vacancy in the Fermi sea which is the hole. If electron is going 
forward in time hole is going backward in time. Electron is bound to hole which is an exciton in 
normal state and excitons mutually interact to form cooper pairs in superconducting state.  

In Hartree-Fock approximation local field correction G(q,ω) is obtained from many particle 
distribution function by solving two particle part2 

G*+,ω. = α*+,ω. : *s+. sc+c.�
qd

v*+c.
v*+. [s*+c. − 1]

+?11?
 

 − e
f∑ h1+.i1?+2+?jkl m�+?11? 9i+2+?j

9*+. [s*+c. − 1],																																																																			*7. 
where 

α*+,ω. = 1
2 o
ℏω + ℏ�q�/2m
ℏω− ℏ�q�/2m+ ℏω− ℏ�q�/2m

ℏω+ ℏ�q�/2mq	. 

this result is valid for any arbitrary potential. The first term describes the motion of a Cooper pair 
in BCS superconducting state in which an electron correlates with another via its correlation hole. 
It contains a drastic frequency dependence. Second term is associated with a bound electron hole 
pair, i.e., exciton. It describes dynamics of the correlation hole. This term represents a proper local 
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field correction in MDF gas when compared with uniform electron gas. For large q and at finite 
frequencies this gives 

Limk→uG*+,ω. = 1 − g*0. = 1
2,																																																																																																														*8. 

 

Figure. 2- (a)  A plot of G(q,ω) versus ω. (b) A plot of G(q,ω) versus q. 

which has been referred to as an exact condition for local field correction1,10. We have made a 
numerical calculation of G(q,ω) given in eqn. (7) valid for all frequencies and wave vectors. Since 
the linear response theory employs the concepts of responses, excitations and relaxations the best 
way to evaluate the first term in eqn. (7) is in the relaxation regime after excitation pulse with 
absolute convergent values of G(q,ω). This makes the two terms identical with different 
contributions to G(q,ω) which are then added together. In fig. 2 (a) we have a plot of G(q,ω) versus 
ω valid for all ω. G(q,ω) is a dimensional quantity whereas ω is measured in eV. The convergent 
values of G(q,ω) are obtained over a range of ω values which are averaged to obtain absolute 
convergent G(q,ω). The curve near 5.5eV exhibits stable BCS superconducting states and the 
variation with ω is more sensitive at high energies. In fig. 2 (b) we have a plot of G(q,ω) versus q 

valid for all q. Here, plotted values as expected show a smoothed curve except for BCS 
superconducting states which can be observed near 1.5eV. Thus, the variation with q is more 
sensitive at low energies. This further shows less variations of G(q,ω) with q because in the 
Hartree-Fock approximation g(0)=1/2 only. The plotted values are in good agreement with those 
obtained by Goran Niklasson2 for large q and finite ω. Our plotted values follow  
1
4 < y*+,ω. < 2

3,																																																																																																																																													*9. 
and 2
5 < y*+,ω. < 2

3.																																																																																																																																										*10. 
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Fig. 3- A plot of G(q,ω) versus rs. 

In fig. 3 we have a plot of G(q,ω) versus rs parameter. This shows the nature of potential between 
two interacting electrons via correlation hole forming a Cooper pair. As expected the curve shows 
an attractive interaction in the range of interest. This confirms the fact that Cooper pairs interact 
attractively and superconducting state is lower in energy than normal state. In fig. 4 (a) we have 
shown a plot of χ(q,ω) versus ω obtained by inserting G(q,ω) values in dielectric functing εs(q,ω). 

 

Figure. 4-(a) A plot of χ(q,ω) versus ω. (b) A plot of χ(q,ω) versus q.   

As expected the variation shows stable superconducting states near low and high enegies ~ 1.5eV 
and 5.5eV. In fig. 4 (b) we have χ(q,ω) versus q curve which shows stable superconducting states 
near low energies. 

3. CONCLUSION 

We have used many electron correlation function to obtain dielectric function for GICs. Total 
dielectric function is the sum of dielectric functions due to impurity charge distribution, screening 
charge distribution and equal time correlation function between first and second electron in 
presence of all other electrons. This is reasonably certain because in the linear response theory total 
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potential is the sum of the potential due to impurity charge distribution and screening charge 
distribution which corresponds to Lindhard. Cooper pair energies are shown negative as a 
convention which represents energy release during Cooper pair formation. Problem regarding 
electrons with different surroundings in the calculation of G(q,ω) is avoided in the formalism 
because we either have an exciton in the normal state or a Cooper pair in BCS superconducting 
state. Excitation process gives a free electron pair in superconducting state or an electron-hole pair 
in normal state. This makes the two terms in G(q,ω) identical. This is essential for a better 
understanding of frequency dependence aspect of motion of an electron relative to the correlation 
hole. 
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