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ABSTRACT 

Minkowski space, M, is a mathematical model for space-time of special relativity theory. There 

are various topologies on M which reflect desirable physical properties. Such physically 

significant topologies on M include t-topology, s-topology, fine-topology, space-topology, A-

topology etc. The A-topology on M is defined to be the finest topology on M with respect to which 

the induced topology on every time-like line and light-like line is one-dimensional Euclidean and 

the induced topology on every space-like hyper-plane is three-dimensional Euclidean. In the 

present paper, a characterization of open sets and closed sets of M
A
 has been found. Several 

examples have been worked out. Further, It has been obtained that A-topology is coarser than 

time, space and fine topology, but not comparable with t, s and f-topology. 

Keywords: Minkowski space, A-topology, time-like line, light-like line, space-like hyper-plane, 

open sets and closed sets of M
A
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1. INTRODUCTION 

Einstein introduced ‘Theory of Special Relativity’ in flat space-time which was compatible with 
classical electromagnetism and developed approximate theory of space-time while gravity and 
acceleration of observer were ignored. German mathematician Minkowski realized that Einstein’s 
theory of Special Relativity can be appreciated in a space-time defined by using Lorentz inner 
product. This four dimensional space-time after Minkowski was named as “Minkowski Space”. 
The key point of Minkowski’s idea is that the geometry of four-dimensional space-time does not 
separate out naturally into a time dimension and a family of ordinary Euclidean 3-spaces. 
Minkowski space-time has a different kind of geometric structure, giving a curious twist to 
Euclid’s ancient idea of geometry. It provides an overall geometry to space-time, making it one 
indivisible whole, which completely encodes the structure of Einstein’s special relativity. 
Minkowski’s space-time continuum is flat and non-curved because of absence of gravity. 

The most natural topology on M is Euclidean topology, generated by Euclidean distance function. 
It is not appropriate choice for the topology on M because (i) Euclidean topology is homogeneous, 
whereas M is not because light cone associated with it separates space-like and time-like vectors 
(ii) its homeomorphism group is very large and of no physical significance. Fine topology was first 
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non-Euclidean topology on M. The fine topology on Minkowski space encodes the information of 
the causal and linear structure of Minkowski space. The fine topology encodes much interesting 
information about the original space-time, as it induces discrete topology on light ray. Intuitively 
this shows that the track of a photon is not a continuous path. This implies that photons are 
excluded from the category of particles whose paths are continuous. If, however, one wants to 
include the photons in this category, then the fine topology will be unsuitable and we have to put a 
new topology on M known as A-topology, defined by Nanda [6].  

The present paper is focused on the comparative study of A-topology with other non-Euclidean 
topologies on M. The paper begins with the necessary notation and preliminaries in Section 2. 
Open and closed subsets of MA have been studied in Section 3. In Section 4, comparison of A-
topology with other non-Euclidean topologies on M has been studied. Finally, Section 5 has the 
conclusion of research work.  

2. NOTATION AND PRELIMINARIES 

Throughout R, Q, M, ρ, τ and µ denote set of real numbers, set of rational numbers, n-dimensional 
Minkowski space, space like hyper-plane, time-like line and light-like line respectively. The spaces 
ME, MF, Mf, Mt, Ms and MA denote Minkowski space with Euclidean topology, fine-topology, f-
topology, t-topology, s-topology and A-topology respectively. 

The n-dimensional real vector space Rn with bilinear form g: Rn × Rn → R, satisfying the 

following properties: (i) symmetric, i.e. g(x, y) = g(y, x) for all x, y ∈ Rn (ii) non-degenerate, i.e.  

g(x, y) = 0, then x = 0 for all x and y ∈ Rn and (iii) there exists a basis e0, e1, ... , en−1 for Rn with 

 is called the n-dimensional Minkowski space. The 

bilinear form g is called the Lorentz inner product and the matrix 
 
is known as the Minkowski 

metric. An element x	∈ M is called event. For  the coordinate x0 is called the time 

component and the coordinates x1, x2, …, xn-1 are called the spatial components of x relative to the 
basis e

0
, e

1
, ... , e

n−1
. Lorentz inner product of two events x and y is denoted by g(x, y) and is equal 

to where and 
 
An indefinite quadratic form Q on M 

induced by Lorentz inner product is defined as Q(x) = g(x, x), for all x ∈ M. The group of all linear 
operators T on M which leave the quadratic form Q invariant, i.e., Q(x) = Q(Tx) for all x ∈ M, is 
called the Lorentz group. An event x	∈ M is called time-like, light-like or null or space-like, 
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accordingly as Q(x) is positive, zero, or negative. For x ∈ M, the three sets   CT(x)= {y ∈ M : Q(y – 

x) > 0} ∪ {x}, CL(x) = {y ∈ M: Q(y – x) = 0} and   CS(x) = {y ∈ M: Q(y – x) < 0}∪ {x} are called 
the time cone, light cone or null cone, and space cone respectively at x. A straight line is called a 
time-like straight line or light ray or space-like straight line, accordingly, as it is parallel to a time-
like or light-like or space-like vector.  

3. SUBSETS OF MA 

In this section, a necessary and sufficient condition for a set to be open in M with A-topology, i.e. 
MA, has been obtained. Also a characterization of closed set of MA has been found. Several 
examples have been worked out. 

3.1 Definition 

The A-topology on four-dimensional Minkowski space M is defined to be the finest topology on M 
with respect to which the induced topology on every time-like line and light-like line is one-
dimensional Euclidean and the induced topology on every space-like hyper-plane is  three-
dimensional Euclidean [6]. In a similar manner, A-topology on n-dimensional Minkowski space 
can be defined. It is finer than the Euclidean topology and hence it is Hausdorff. 

Proposition 3.2: Let MA be the n-dimensional Minkowski space with A-topology and G be a non-
empty subset of M. Then G is open in MA if and only if G ∩ ρ, G ∩ τ and G ∩ µ are open in ρE, τE 
and µE respectively. 

Proof: If G is open in MA then by the definition of A-topology on M, G ∩ ρ, G ∩ τ and G ∩ µ are 
open in ρE, τE and µE respectively. Conversely, let T be the topology generated by the basis B = {G 

M: G ∩ ρ, G ∩ τ and G ∩ µ are open in ρE, τE and µE respectively}. Clearly A-topology is 
coarser than T. Let H∈T. Then H ∩ ρ, H ∩ τ and H ∩ µ are open in ρE, τE and µE respectively, 
because H is a union of element of B. By definition, A-topology is the finest such topology. Hence 
topology T =A. This shows that G is open in A-topology. 

Proposition 3.3: Let MA be the n-dimensional Minkowski space with A-topology and F be a non-

empty subset of M. Then F is closed in MA if and only if F ∩ ρ, F ∩ τ and F ∩ µ are closed in ρE, τE 

and µE respectively. 

Proof: Let F be closed in MA. Then M – F is open in MA, (M – F) ∩ ρ, (M – F) ∩ τ and (M – F) ∩ µ 
are open in ρE, τE and µE respectively. This implies that {ρ – (F ∩ ρ)}, {τ – (F ∩ τ)} and  {µ – (F ∩ 
µ)} are open in ρE, τE and µE respectively. Hence (F ∩ ρ), (F ∩ τ) and (F ∩ µ) are closed in ρE, τE 
and µE respectively.  

Conversely, let (F ∩ ρ), (F ∩ τ) and (F ∩ µ) are closed in ρE, τE and µE respectively. This implies 
that {ρ – (F ∩ ρ)}, {τ – (F ∩ τ)} and {µ – (F ∩ µ)} are open in ρE, τE and µE respectively. Further, 

⊆



Comparative Study of A-topology with Other Topologies 

Advances in Applied Physical and Chemical Sciences-A Sustainable Approach - ISBN: 978-93-83083-72-5 81 

(M – F) ∩ ρ, (M – F) ∩ τ and (M – F) ∩ µ are open in ρE, τE and µE respectively. This implies that 
(M – F) is open in MA, hence F is closed in MA. 

Proposition 3.4: Let MA be the n-dimensional Minkowski space with A-topology. Then CT(0) - {0} 

and CS(0) - {0} are open in MA. 

Proof: We have proved only that (CT(0) - {0}) is open in MA. Since (CT(0) - {0}) is open in ME and 
A-topology is finer than Euclidean topology [6], hence (CT(0) - {0}) is open in MA.  

Proposition 3.5: Let MA be the n-dimensional Minkowski space with A-topology. Then singletons 

are not open in MA. 

Proof: Let x ∈ M then for any ε > 0, there exist no open ball such that  {x} 

because has infinitely many points. Hence {x} is not open in ρE. And by Proposition 3.2, 

{x} is not open in MA. 

Proposition 3.6: Let MA be the n-dimensional Minkowski space with A-topology. Then CL(0), CT(0) 
and CS(0) are not open in MA. 

Proof: We have proved only that CL(0) is not open in MA. Let ρ be the space-like hyper-plane 
passing through origin respectively. Since CL(0) ∩ ρ = {0} and singletons are not open in ρE. This 
implies that CL(0) ∩ ρ is not open in ρE. Hence CL(0) is not open in MA. 

Similarly, space like straight line, time like straight line, time like straight line, x-axis, y-axis and 
singletons are not open in MA.  

Proposition 3.7: Let MA be the n-dimensional Minkowski space with A-topology. Then CL(0) is 

closed in MA. 

Proof: Let X ≡ CL(0). Then Xc = M – CL(0) = {CS(0) CT(0)} – {0}. This implies  Xc = (CS(0)-

{0}) ∪ (CT(0)- {0}). Since (CS(0)-{0}) and (CT(0)- {0}) are open in MA by Proposition 3.2 and 
arbitrary union of open sets is open, hence Xc is open in MA. This implies that X ≡ CL(0) is closed in 
MA. 

The other closed sets of MA are space like straight line, time like straight line, light like straight 
line, x-axis, y-axis and singletons.  

Proposition 3.8: Let MA be the n-dimensional Minkowski space with A-topology. Then CL(0) - {0}, 
CT(0) - {0} and CS(0) - {0} are not closed in MA. 

Proof: We have proved only that CL(0) – {0} is not closed in MA. Let µ be the light-like line 
passing through origin. Since (CL(0) – {0}) ∩ µ = µ - {0} which is not closed in µE. It follows that 
(CL(0) – {0}) ∩ µ is not closed in µE. Hence CL(0) – {0} is not closed in MA. 

Similarly, CT(0) and CS(0) are not closed in MA.  

)(xN E

ε )(xN E
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Proposition 3.9: Let {tn} be a sequence of distinct time-like lines (or space-like hyper-plane) 

passing through a point z. Let zn ∈ tn such that d(zn, z) →0. Then the set Z = {zk: zk ≠ z, k ∈ N} is 

closed in MA [6]. 

Proposition 3.10: Let M be the n-dimensional Minkowski space and Z = {zk: zk ≠ z, k ∈ N} be a set 

of points on distinct time-like lines passing through a point z such that d(zn, z) →0. Then the set M - 

Z is not open in Mt. 

Proof: Since every basic open set  in t-topology about z will meet z [5], therefore ⊄ 

M – Z, M – Z is not open in Mt.  

Proposition 3.11: Let M be the n-dimensional Minkowski space and Z = {zk: zk ≠ z, k ∈ N} be a set 

of points on distinct time-like lines (or space-like hyper-plane ) passing through a point z such that 

d(zn, z) →0. Then the set M - Z is not open in Mf. 

4. COMPARISON OF A-TOPOLOGY WITH OTHER TOPOLOGIES  

In this section, comparison of A-topology with other topologies on M has been carried out, in 
detail. Nanda [6] proved that A-topology is finer than the Euclidean topology. For completeness, 
we give the result as Proposition 4.1. 

Proposition 4.1: Let M be the n-dimensional Minkowski space. Then the A-topology on M is finer 

than the Euclidean topology on M. 

Proof: Let A and E denote A-topology and Euclidean topology respectively. The Euclidean 
topology induces one-dimensional Euclidean topology on every time-like line and light-like line 
and three-dimensional Euclidean topology on every space-like hyper-plane on M. By definition, A 

is the finest such topology hence, E ⊆ A. 

Proposition 4.2: Let M be the n-dimensional Minkowski space. Then the A-topology is strictly finer 

than the Euclidean topology on M.  

Proof: By Proposition 4.1, A-topology is finer than the Euclidean topology on M. To prove the rest 
we have to find a subset of M which is open in MA but not open in ME. For this, let {tn} be a 

sequence of distinct time-like lines passing through a point z. Let zn ∈ tn such that d(zn, z) →0. Let 

Z = {zk: zk ≠ z, k ∈ N}. Then the set Z is closed in MA by Proposition 3.9. This implies (M – Z) is 
open in MA. On other hand, (M – Z) is not open in ME because for any ε > 0, every open ball 

 intersects Z, this implies ⊄ (M – Z). 

Proposition 4.3: Let M be the n-dimensional Minkowski space. Then the A-topology on M is not 

comparable with the t-topology. 

( )zN t
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Proof: It is known that CT(0) is open in Mt [1]. By Proposition 3.6, CT(0) is not open in MA. This 
implies that t topology is not coarser then A-topology. Further, let {tn} be a sequence of distinct 

time-like lines passing through a point z. Let zn ∈ tn such that d(zn, z) →0. Let   Z = {zk: zk ≠ z, k ∈ 
N}. Then the set Z is closed in MA by Proposition 3.9. This implies (M – Z) is open in MA, whereas 
(M – Z) is not open in the t-topology Proposition 3.10. This proves that A-topology is not coarser 
then t-topology.  

Proposition 4.4: Let M be the n-dimensional Minkowski space. Then the A-topology is not 

comparable with the s-topology on M. 

Proof: Let A and s denote A-topology and s-topology respectively. To prove that the A-topology is 

not comparable with s-topology, we prove that A⊄ s and s ⊄ A. Since CS(0) is open in Ms [5] but 
not open in MA by Proposition 3.6. This implies that s-topology is not coarser then A-topology. 
Further, let {sn} be a sequence of distinct space-like hyper-planes passing through a point z. Let zn 

∈ sn such that d(zn, z) →0. Let Z = {zk: zk ≠ z, k ∈ N}. Then the set Z is closed in MA by Proposition 
3.9. This implies (M – Z) is open in MA. On other hand, (M – Z) is not open in the s-topology by 
Proposition 3.11. This proves that A-topology is not coarser then s-topology.  

Proposition 4.5: Let M be the n-dimensional Minkowski space. Then the A-topology is not 

comparable with the f-topology on M. 

Proof: Let A and f denote A-topology and f-topology respectively. To prove that the A-topology is 

not comparable with f-topology, we have to show that A ⊄ f and f ⊄ A. Since CT(0) is open in Mf 

[8] but not open in MA by Proposition 3.6. This implies that f ⊄ A. Further, Z = {zk: zk ≠ z, k ∈ N} be 
a set of points on distinct time-like lines passing through a point z such that d(zn, z) →0. Then the 
set Z is closed in MA by Proposition 3.9. This implies (M – Z) is open in MA [6]. On other hand, (M 

– Z) is not open in the f-topology by Proposition 3.11. Hence A ⊄ f.  

Proposition 4.6: Let M be the n-dimensional Minkowski space. Then the A-topology is coarser 

than the space topology on M.  

Proof: Let A and S denote A-topology and space topology respectively. To prove that the A-

topology is coarser than the space topology, we have to show that A ⊆ S. The A-topology on M 
induces three-dimensional Euclidean topology on every space-like hyper-plane and space topology 

is the finest such topology [4], hence A ⊆ S.  

Proposition 4.7: Let M be the n-dimensional Minkowski space. Then the A-topology is coarser 

than the time topology on M.  
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Proof: Let A and T denote A-topology and time topology respectively. To prove that the A-

topology is coarser than time topology, we have to prove that A ⊆ T. The A-topology on M induces 
one-dimensional Euclidean topology on every time-like line and time topology is the finest 

topology that induces one-dimensional Euclidean topology on every time-like line [4], hence A ⊆ 
T.  

Proposition 4.8: Let M be the n-dimensional Minkowski space. Then the A-topology is coarser 

than the fine topology on M.  

Proof: Let A and F denote A-topology and fine topology respectively. To prove that the A-topology 

is coarser than the Fine topology on M, we prove that A ⊆ F. The A-topology induces one-
dimensional Euclidean topology on every time-like line and three-dimensional Euclidean topology 

on every space-like hyper-plane and fine topology is finest such topology [8], hence A ⊆ F.  

5. CONCLUSION 

The A-topology on Minkowski space is a physically significant topology. It induces Euclidean 
topology on light rays which shows that paths of photons are continuous. In the present work, it has 
been obtained that A-topology is coarser than time, space and fine topologies, but not comparable 
with t, s and f- topologies.  

Basically, study and visualization of open sets and closed sets of MA are a must for further 
researches in MA. Open sets are used while comparing A-topology with other topologies. It’s 
comparison with other topologies is important because MA reflects some topological properties 
which are preserved under finer or coarser topologies. Because of the complexity of the nature of 
A-topology, it can be concluded that the present study is important from both mathematical and 
physical point of view.  
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