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ABSTRACT 

A method of analysis for composite beams with any degree of horizontal shear interaction is 

presented. The method is applicable to composite beams that have sudden, point by point 

variations in their structural properties. Also, the beam may be subjected to any type of load 

whether transverse or longitudinal and may be assumed to be supported in any reasonable 

manner. The paper includes a finite element model substituted for the real structure and the 

mathematical matrix equations which describe the load –deflection behavior for the model. 

These equations are solved for the unknown deflections by modified Gaussian elimination 

method. 

Keywords. Finite element model, bar and spring model, gauss elimination method, composite 

beams 

1. INTRODUCTION 

This study is concerned with the development of an efficient method for the analysis of composite 
beams. In this text, the term "composite beam" refers to structural systems consisting of two 
separate members that are joined at their interface by a shear connection. A practical example is a 
highway bridge girder that acts compositely with the floor slab. A typical composite beam is shown 

in Fig 1. The top member is a concrete slab and the bottom member is a steel I-beam. Shear 
connection is provided between the two members by studs which were welded to the top of the 
beam prior to placement of the concrete. The method of analysis presented is not limited to 
concrete- steel combinations such as shown in Fig 1 but is applicable to any similar composite 

system. The stiffness and strength characteristics of a composite system are greatly affected by the 
amount of interaction between the slab and the beam. Number, location, and strength of the shear 
connectors are the factors that determine the degree of interaction between the two members. A 
complete absence of shear connectors causes the most flexible system. At the other extreme, the 

stiffest possible system is obtained when sufficient connectors are provided to insure that there is 
no slip between the two members. It is possible to determine the moment of inertia of the system 
for both of the extreme cases; therefore, conventional methods of analysis may be applied to them. 
For intermediate cases, it is not possible to calculate the moment of inertia of the system; hence, a 

new method of analysis is needed. Special-case solutions for partial-interaction problems may be 
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found in the technical literature, but a general method of analysis for the full range of composite 
structures has not been found 

2. A FINITE-ELEMENT METHOD OF ANALYSIS FOR BEAM-COLUMNS  

The method of analysis presented in this text has been greatly influenced by Matlock's numerical 
solutions to beam-column on elastic foundation problems. Matlock's approach to these problems is 
to replace the real physical system by an appropriate finite-element model. The model used by 
Matlock is composed of rigid, weightless bars hinged at their ends. The beam stiffness of each 

finite beam element is concentrated in the springs at the hinges. In Fig 2 the development of a bar-
and-spring model from a section of a beam element subjected to pure bending is shown. Figure 2b 
shows the stresses acting on the beam element. The distributed stresses may be replaced by 
concentrated forces as shown in Fig 2c. In Fig 2d the deformed beam element is replaced by a pair 

of plates hinged at the center and restrained by springs at the top and bottom. A beam could be 
represented by a series of such beam-element models as in Fig 2e. Finally, a cruder model could be 
made by using rigid bars and springs as shown in Fig 2f. Based on the model, a set of equations 
which describes the deflections as a function of the applied loads is derived. This set of equations 

forms a diagonally-banded matrix which is solved by a direct elimination procedure. 
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Figure 1 &2 

A list of the assumptions that were made in the derivation of the equations are : vertical deflections 
of the slab and beam are equal, the slab and the beam interface is a straight line, deflections are 
small compared to the length of the structure, linearly-elastic shear connectors are used, slab and 
beam have linear stress-strain properties, the strain distribution throughout the cross section of both 

the beam and slab is linear; however, the strain distribution for the entire composite section may 
have a discontinuity at the interface as shown in Fig 3d, transverse shear deformations are 
negligible within each member, the cross sections of both members are symmetrical about the 
vertical axis and loads are applied only in the plane of the vertical axis. 

3. THE BAR-AND-SPRING MODEL 

Figure4 shows the model that is used to replace the real system. Each member (slab and beam) is 
represented by a system of bars and springs. All of the bending characteristics for each of the two 
layers of the system are lumped in the springs which act at the hinges of the bars. The weightless 
bars possess an infinite resistance to bending, but they are axially deformable. Pin-connected 

vertical spacer rods are included between the slab model and the beam model to insure that their 
vertical deflections are equal. The horizontal shear transfer mechanism is modeled by a pointer rod 
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and spring system. To the center of each bar is attached an infinitely stiff cantilever pointer rod that 
extends to the interface. A linear spring which represents a shear connector is attached to each pair 
of slab and beam pointer rods. An important feature of the model shown is that it permits a 

completely general description of the system. The properties of the system are defined only at 
discrete points; some properties are related to the joints while others are related to the bars. 
Therefore, abrupt variations in the properties along the member are allowable.  

The following quantities are defined at the joints: vertical deflection W, bending moments MS and 

Mb, accumulated axial transverse loads Q, applied torques TS and Tb, rotational restraints RS, and 
Rb, support springs S, cross-section areas AS and Ab, and distances from the neutral axis to the 
interfaces Cs and Cb . In the symbols above as well as in the remainder of the text, the superscript 
"s" refers to the slab and the superscript "b" refers to the beam. The following quantities are related 

to the bars and are defined at the half-station: horizontal displacements US and Ub, slip Y, shears VS 
and Vb, shear connector modulus KC, horizontal elastic springs KS and Kb, distances from the 
neutral axes to the horizontal springs sa and ba and concentrated longitudinal loads and The 
quantities listed above are shown acting in the positive sense in Fig 6 interfaces and In the symbols 

above as well as in the remainder of the text, the superscript "s" refers to the slab and the 
superscript "b" refers to the beam.  

4. DERIVATION OF EQUATIONS 

Points are considered while deriving equations; The relationship between the horizontal 

displacement and the axial tension of the slab can be determined by examination; The axial tension 
is equal to the elongation multiplied by the axial spring Constant; differential equation is a 
moment-equilibrium equation. It also involves a summation of vertical forces and the moment-
curvature relationship A free-body diagram of a portion of the system is shown; It should be noted 

that the applied torques and rotational restraints are felt by the system as transverse loads one 
station away from where the torque or rotational restraint is applied;  

The nonlinearity occurs because the horizontal springs cause the final axial load distribution to be 
dependent on both vertical deflections and horizontal displacements; An iterative solution must be 

used when Equation nonlinear. In the iterative solution, the products of the horizontal spring 
constants and the horizontal displacements are computed and treated as known stiffness terms; 
Zero horizontal displacements are assumed for the first iteration. In each successive iteration, the 
horizontal displacements from the previous iteration are used. The process is continued until the 

computed displacements from two successive iterations agree to within specified tolerance 
linearity. 
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Figure 3 

 

Figure 4 
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5. GOVERNING BOUNDARIES AND SPECIFIED CONDITIONS 

A zero bending moment occurs at a point when the curvature and axial loads in a structure are both 
equal to zero. This condition is automatically created at each end of the structure. When Equation 

is written one station past the ends of the structure, some of the terms in the equation are equal to 
zero because physical properties of the system are zero past the ends. The remaining terms specify 
that the second derivative of vertical deflection with respect to distance (curvature) is equal to zero. 
A zero axial load is produced when the first derivative of horizontal displacement with respect to 

distance is set equal to zero. 

A zero axial load is produced when the first derivative of horizontal displacement with respect to 
distance is set equal to zero. This condition is also created automatically by the physical properties 
of the system vertical deflection may be specified at any point in the structure by either of two 

methods. One method is to input a foundation spring of sufficient magnitude to insure a zero 
deflection. The other approach is to manipulate the matrix coefficients. A deflection can be 
specified at any Station i simply by the clearing of all of the coefficients in Equation to zero except 
C: which is set equal to 1.0 and 1. The desired deflection C: 4 which is set equal to 1.The 

(resistance to rotation) of a member may be controlled at any point by the specification of a 
rotational restraint. A rotational spring adds a bending moment to the system that is equal to the 
product of the slope at the point and the specified spring constant. A very rotational restraint cause 
S the slope at that point to be essentially zero. The zero curvature that is automatically created at 

the end of the member is over-ridden by the specification of a rotational restraint at the end. 
Horizontal displacements can be controlled by the specification of horizontal springs .No provision 
is made in the present analysis to control the displacements by manipulation of the matrix 
coefficients. 

6. ACCURACY OF THE SOLUTION 

Approximation errors are introduced when the finite-element model is substituted for the real 
structure. This type of error can be reduced to any desired level by dividing the model into more 
increments. An excessive number of increments should be avoided because computation time 

increases in simple proportion to the number of increments. Experience will enable the user to 
determine the optimum number of increments for his desired accuracy. Because of the large 
number of arithmetic operations involved in the solution, round-off errors may occur. Computer 
software using approximately 11 decimal digits has been used to verify the method of solution, and 

no significant errors have been observed in the practical problems that have been solved. Errors can 
be caused by the specification of unreasonably large values of certain of the physical properties. A 
good ru1e-of-thumb is that the magnitude of a rotational restraint should never be greater than 103 
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times the magnitude of the sum of the bending stiffness of the members at that station. Similarly, 
the shear connector modulus should not exceed 102 times the sum of the bending stiffness’s. 

7. RESULTS 

After the vertical deflection and horizontal displacements have been computed, bending moment, 
axial load, slip, force per shear connector, shear, and support reaction can easily be determined. 
Bending moment is computed for the slab and beam by Equations derived. The force per shear 
connector is simply the product of the slip and the shear connector modulus. An expression for the 

shear in the slab is obtained by a summation of moments about the center of the slab bar in Fig 9a 
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