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ABSTRACT 

This chapter deals with implementation of multi objective optimization methods for solving 

economic emission dispatch (EED) problem of thermal power generators. Four different 

evolutionary algorithms such as non-dominated sorting genetic algorithm-II (NSGA-II), multi-

objective particle swarm optimization (MOPSO), multi-objective differential evolutionary 

algorithm (MODE) and multi-objective adaptive clonal selection algorithm (MOACSA) have 

been presented to solve EED problem. In all these methods a non-dominated sorting technique 

along with crowded distance ranking is used to find and manage the pareto optimal front. Here 

three different objectives namely cost, NOX emission and loss are considered for optimization. In 

formulation of EED problem for multi-objective optimization various operational constraints in 

addition to power demand equality constraints are taken into consideration. An IEEE 30-bus 6 

unit test system is considered to show the efficiency of the presented methods in solving MOEED 

problem. The results are compared with two and three objective case studies by using these four 

algorithms namely NSGA-II, MOPSO, MODE and MOACSA methods. 

Keywords: Multi-objective optimization, economic emission dispatch, clonal selection algorithm 

1. INTRODUCTION 

Traditionally ED problem [1-4] plays vital role in optimal operation of power system. It is referred 
as the process of allocation of generation to various generating units available such that cost of 
generation is optimum subject to several equality and inequality constraints. However, with 
increase in public awareness over the environmental pollution caused by thermal plants, EED 
problem [5, 6] has drawn much more attention for a good dispatch scheme forn great economical 
benefit, and reduced pollutants emission.  

Various investigations on EED have been reported in the literature till date. A direct approach 
using conventional methods is, to convert multi-objective EED (MOEED) problem into an 
equivalent single objective problem [7, 8] by treating emission as constraint. However this method 
fails in getting complete trade-off curve between cost and emission due to approximation model. 
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Later a linear programming based optimization technique is proposed in [9] to solve EED problem 
by considering only one objective at any point of time. But this method requires high computation 
time and it also fails in giving precise information about complete trade-off curve between cost and 
emission. In other direction, Zahavi et al. converted MOEED problem to a single objective problem 
with linear combination of different objectives as a weighted sum [10], in which a set of Pareto-
optimal solutions are attained with different weights. Unfortunately, this method demands multiple 
runs to get Pareto-optimal solutions and not suitable for problems having a non-convex Pareto 
front. 

In recent years many biological inspired [11], swarm intelligence [12] and artificial intelligent 
based techniques [13] are developed and applied successfully to solve EED problems. The AIS’s 
with intrinsic characteristics [14] are capable to make these methods more appropriate for MOO. 
Recently, AIS based algorithm is used to solve combined heat and power ED problem by Basu 
[15]. In this article a new artificial immune system based adaptive clonal selection algorithm 
(ACSA) is presented in addition to three standard algorithms namely NSGA-II, MOPSO and 
MODE. All these four methods are applied to solve multi-objective EED problem. 

2. MATHEMATICAL FORMULATION OF EED PROBLEM 

The mathematical formulation of EED problem treated as MOOP. In literature, this MOOP 
formulation is defined well and is presented briefly in this section. The general MOOP is composed 
of control variables set, objective functions, several equality and inequality constraints that are 
functional relations.  

3. PROBLEM OBJECTIVE FUNCTIONS:  

In this chapter, three different objectives are considered for illustrating various multi-objective 
optimization methods. These objective functions are minimization of fuel cost, NOX emission and 
real power transmission loss. 

Minimization of fuel cost 

The ED problem is defined as minimization of the total fuel cost by satisfying various equality and 
inequality constraints. The total fuel cost function of generator units can be denoted as: 

( ) 2
1

1 1
($ / )

NG NG

i Gi i i Gi i Gi
i i

F FC P a b P c P h
= =

= = + +∑ ∑       (1) 

where ,i i ia b and c are the quadratic fuel cost coefficients pertain to th
i generator; GiP  is generating 

real power output of th
i generator; NG  is the total generator units. 
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Minimization of NOX emission 

Thermal units operating with fossil-fuels may release environmental pollutant emissions due to 
burning of fuels for production of electrical power. The emission function includes sum of all type 
of emissions like sulphur oxides SOX and nitrogen oxides NOX. The emission produced by each 
thermal unit denoted as a quadratic function in terms generator power output. Therefore the 
objective function represents minimization of NOX or SOX emission may be mathematically 
modelled as: 

2
2

1
( ) i Gi

NG
P

i Gi i Gi i i
i

F P P eλα β γ ξ
=

= + + +∑        (2) 

where , , ,i i i i iandα β γ ξ λ  are emission coefficients of the th
i thermal unit. 

Minimization of real power loss 

Active power transmission loss LP  is also treated as one objective function, since the loss 
reduction is an efficient way to decrease the generation cost and increases the social welfare. This 
objective function denoted as:  

2 2
3

1
[ 2 cos( )]

NL

L k i j i j i j
k

F P g V V VV δ δ
=

= = + − −∑        (3) 

where kg is the conductance of a transmission line k  connected between buses i  and j ; iV , jV  

are the voltage magnitudes at bus i  and j respectively; iδ  and jδ  are the phase angles of voltages 

at bus i  and j  respectively. 

Problem Constraints 

The OPF problem has to satisfy both equality and inequality constraints. The operating limits of 
system are assumed as inequality constraints, while load flow equations are equality constraints.  

Equality constraints  

The equality constraint represents real power balance equilibrium condition it must satisfy always 
for any power system network, i.e.  

1
0

NG

Gi D L
i

P P P
=

− − =∑          (4) 
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Here DP  is total active power demand in the system. And LP  is total transmission losses which can 

be calculated by using the NR load flow method. 

Inequality constraints 

The inequality constraints representing the system operating limits as follows. 

Generation constraints: Generator voltages, real power outputs and reactive power outputs are 
restricted by their lower and upper bounds as follows: 

min max , 1,. . .,Gi Gi GiV V V i NG≤ ≤ =        (5) 

min max , 1,. . .,Gi Gi GiP P P i NG≤ ≤ =        (6) 

min max , 1,. . .,Gi Gi GiQ Q Q i NG≤ ≤ =        (7) 

Transformer constraints: Transformer tap settings are restricted by their minimum and maximum 
limits as follows: 

min max , 1,. . .,i i iT T T i NT≤ ≤ =        (8) 

where NT – Number of tap changing transformers  

Shunt VAR constraints: Reactive power injections at buses are restricted by their minimum and 
maximum limits as: 

min max , 1,. . .,Ci Ci CiQ Q Q i NC≤ ≤ =        (9) 

where NC – Number of shunt compensators 

Security constraints: These include the limits of voltage magnitudes at load buses and transmission 
line loadings as follows: 

min max , 1,. . .,
Li Li Li PQ

V V V i N≤ ≤ =        (10) 

max , 1,. . .,li liS S i NL≤ =         (11) 
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4. CONSTRAINTS HANDLING TECHNIQUE 

In optimization process there is possibility of violation of inequality constraints results in infeasible 
solution. When too many constraints are imposed in problem there is a chance to get no solution 
satisfying all of them. In order to solve this problem a penalty factor is added to objective function 
corresponding to different security constraints like load bus voltage limits, line flow limits and 
reactive power generation limits. If all the security constraints are satisfied then the penalty 
function value will be zero. All security constraint violations are handled as sum of all penalties 
which is added to one of the objective function is given by 

LF BV QgJpen  J  J  J= + +          (12) 

Penalty function for line flow violations,  

2

1
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i
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=

−∑=         (13) 

Penalty function for load bus voltage violations,  
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Penalty function for reactive power generation violation  
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where Kp, Kv and Kq are the corresponding scaling factors for penalty functions. 

5. MULTI-OBJECTIVE OPTIMIZATION 

In real world, any multi-objective optimization problem consists of several objective functions that 
are needed to optimize simultaneously with certain equality constraints along with inequality 
constraints. This MOOP can be formulated mathematically as:  

1 2( ) [ ( ), ( ), ( )] 1, 2, ,iMin F x f x f x f x i N= =K L       (16) 

{ }subject to : ( ) 0, ( ) 0 1, 2, , ; 1, 2, , ;
j k

g x h x j J k K= ≤ = =L L  
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where ,i k jf h and g are th
i objective function, th

k inequality constraint and th
j  equality constraint 

respectively. x - represents a decision vector; , &N K J are number of multiple objectives, 

inequality and equality constraints. 

Best Compromise Solution 

After having the Pareto-optimal set, a fuzzy-based mechanism is applied to extract a the best 

compromise solution. Due to imprecise nature of the decision maker’s judgment, the th
i  objective 

function of a solution in the Pareto-optimal set, iF , is represented by a membership function iµ  

defined as 

min

max
min max

max min

max

1, ,

, ,

0, .

i i

i i
i i i i

i i

i i

F F

F F
F F F

F F

F F

µ

 ≤
 −

= < <
−

≥

       (17) 

where max
i

F and min
i

F are the maximum and minimum values of the th
i objective function 

respectively. 

Particle swarm optimization (PSO)  

Recently a new evolutionary computational intelligence technique called particle swarm 
optimization (PSO), has been proposed and introduced [16] to solve optimization problems. This 
technique combines social psychology principles in socio-cognition human agents and evolutionary 
computations. PSO has been motivated by the behavior of organisms such as fish schooling and 
bird flocking. Generally, PSO is characterized as simple in concept, easy to implement, and 
computationally efficient. Unlike the other heuristic techniques, PSO has a flexible and well-
balanced mechanism to enhance the global and local exploration abilities.  

Differential Evolution (DE)  

In the recent past, power full EA such as differential evolution (DE) techniques are employed for 
power system optimization problems. DE, developed by Storn et al. [17], is a numerical 
optimization approach that is simple to implement, significantly faster and robust. These methods, 
when used with real-valued parameters, optimize non-differentiable and nonlinear continuous 
space problems. One of the significant features of DE is that it utilizes the variation of sampled 
object vectors pairs obtained at random to conduct mutation operation than using probability 
function like other EAs.  
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Genetic Algorithm 

Genetic algorithm (GA) is a directed random search method used to find global minimum solution 
in huge multidimensional search area. For the first time, Holland proposed GA [18] and is 
effectively applied to many optimization problems [19]. GA makes use of genetic operators to 
progressively develop fitness of population and control individuals in a solution population over 
numerous generations. Generally, all the optimization parameters are considered as binary numbers 
.The GA optimization uses a random numbers generator to generate random initial population. This 
method is useful when optimization problem prior knowledge is unavailable.  

Clonal Selection Algorithm 

With the growth of computational intelligence in recent years, the branch of AIS has greatly 
influencing the engineering applications. The AIS based algorithms are developed using biological 
principles such as clone generation, proliferation and maturation. These principles are mimicked 
then included into an AIS based algorithm termed as the clonal selection algorithm (CSA) [20, 21]. 
The clonal selection algorithm (CSA) named CLONALG, was proposed by Leandro and Fernando 
[22] is population based stochastic technique. This CSA is more extensively used artificial immune 
based optimization method in pattern recognition and multimodal optimization problems with 
binary representation of variables.  

Implementation of MOACSA for EED Problem 

This section deals with step by step procedure of the MOACSA method for solving EED problem 
with consideration of transmission loss, generation limits and all security constraints.  

Generate randomly distributed antibodies of initial population with size ( )
pop

N N×  and store them 

in archive X . 

 21 popN

T

i
X X X XX=  

 K K
        (18) 

where, [ ]i G c 1xN
X   P        V     Tap      Q

G
=

  

All elements of vector iX  is set of decision variables called as molecules of  particular antibody. 

The vector consists of these antibodies population to be  evaluated and is denoted by:  
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
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       (19) 

For each antibody satisfy the equality and inequality constraints. That means adjust the sum of GiP

values in an antibody equal to total load demand, DP , i.e.. 1 GiPN

D

G

i P=∑ =  

Run NR load flow program for each antibody and calculate the transmission losses, slack bus 
power and line flows. 
Evaluate the affinity for each antibody which is nothing but objective function values.  
Cost function, F1 evaluating from eq. 1 
NOx emission function, F2 estimated from eq. 2 
Loss PL estimated from eq. 3 
The initial population is sorted using non-dominated sorting technique described in section 1.3.1 
and then assign crowding distance [23].  

Set iteration counter : 0k =  

1k k= +  

Select the best population selN of antibodies which gives non-dominated solution from the archive 

ndsX  and store them at an archive bestX for cloning and maturate operation. 

Cloning of population set 1 2[ ]
seli N

C C C C C= L L , where iC represents number of copies of th
i

antibody from bestX  

The population of clones undergoes somatic hyper maturation results in new antibody is given by:  

1 2( ) ( ) ( )*max( )new i d d iC i C i R R fα= + ∗ −       (20) 

where 1dR  and 2dR are two randomly generated numbers in the range of 1 to N  and iα  is 

mutation rate and given as:  

exp( )i ifα ρ= −          (21) 

where ρ  controls decay of exponential function, if is normalized antigenic affinity over the 
interval (0,1). 
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1

sel

i
i N

i
i

F
f

F
=

=

∑
          (22) 

where iF is the fitness or affinity of th
i  best population 

Again each molecule of new mutated antibody is tested for any constraint violation. 
Recalculate the affinity of all mutated clones as in 4th step and sorted again based on non-
dominated sorting. 
 
Modify the acceleration factor cc cc γ= × where γ  value lies in between 0.5 to 1.1. 

Check for stopping criterion. If the iterations are reaches to maximum go to next step, otherwise go 
to step 7. 
 
Obtain Pareto optimal set of solutions from final iteration. 
Step1: The best compromised solution is obtained from Pareto optimal front using fuzzy 

membership function approach. 

6. SIMULATION RESULTS 

The proposed multi-objective optimization algorithms presented in this chapter are tested on 6-unit 
IEEE 30-bus test system. This system has 6 generators, 41 transmission lines, 4 transformers and 9 
reactive power injections at various buses. The detailed data of the test system is available in [24]. 
The generator voltage limits, transformer taps and Qshunts are assumed to have their upper and 
lower limits as shown in Table 1. 

Table 1: Limits of Control variables 

Variables Vgs Taps Qshunts 

Min 0.95 0.9 0 
Max 1.1 1.1 0.05 

 
For this test system three objectives, namely fuel cost, emission and loss have been considered for 
optimization. For comparison purpose the simulations carried out on test system for Tri-objective 
optimization (Fuel cost, NOx emission and loss) 

This MOEED problem has also been solved by implementing four different algorithms namely 
MOACSA, NSGA-II, MOPSO and MODE and results are compared. The control parameters of all 
the four algorithms are given in Table 2. 
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Table 2: Control parameters of various algorithms used for computation 

MOACSA NSGA-II MOPSO MODE 

Population = 50 
Best pop = 40 
No. of iterations= 200 
Clonal size factor= 1 
cc = 0.8971 

Population = 50 
No. of gen = 200 
Crossover = 5 
Mutation = 50 
Tournament= 2 

Population = 50 
No. of gen = 200 
C1 = 2 
C2 = 2 
 

Population = 50 
No. of gen = 200 
Crossover = 0.98 
FF = 0.5 
Tournament= 1 

Tri objective optimization:  
This case study is an example of three-dimensional multi-objective optimization of EED problem 
with all security constraints. Here, three objectives are optimized simultaneously by all the four 
methods. The Pareto fronts of various methods are indicated in Fig. 1 for case-ii. The optimal 
settings of control variables along with function are tabulated in Table 3 for case-ii. The best 
compromised solution with each method for tri-objective optimization is given in Table 4. 

  
(a) MOACSA      (b) NSGA-II 

   
 (c) MOPSO      (d) MODE 

Fig. 1: Pareto optimal front of test system with cost, emission and loss as objectives (case-ii) 
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Table 3: Optimal solution of test system with various methods for cost, emission  

and loss objectives (case ii) 

Method MOACSA NSGA-II MOPSO MODE 

Variables 
Min. 

Cost 

Min. 

emission 

Min. 

loss 

Min. 

cost 

Min. 

emission 

Min. 

loss 

Min.  

cost 

Min. 

emission 

Min. 

loss 

Min.  

cost 

Min. 

emission 

Min. 

loss 

PG1 (MW) 

PG2 (MW) 

PG3 (MW) 

PG4 (MW) 

PG5 (MW) 

PG6 (MW) 

V1 (p.u.) 

V2 (p.u.) 

V3 (p.u.) 

V4 (p.u.) 

V5 (p.u.) 

V6 (p.u.) 

T1 

T2 

T3 

T4 

Qc10 (p.u) 

Qc12 (p.u) 

Qc15 (p.u) 

Qc17 (p.u) 

Qc21 (p.u) 

Qc22 (p.u) 

Qc23 (p.u) 

Qc24 (p.u) 

Qc29 (p.u) 

11.1752  

29.7040  

49.8639  

98.4056  

60.8407  

35.2904 

1.0165 

1.0138 

1.0240 

1.0500 

1.0040 

1.0486 

0.9584 

1.0400 

0.9475 

0.9595 

0.0500 

0.0134 

0.0427 

0.0500 

0.0500 

0.0371 

0.0500 

0.0039 

0.0341 

41.2880 

46.2594 

54.5698 

39.2474  

54.1692  

51.4756 

1.0383 

1.0145 

0.9792 

0.9866 

0.9523 

1.0187 

1.0447 

0.9773 

0.9616 

0.9624 

0.0013 

0.0070 

0.0203 

0.0500 

0.0109 

0.0351 

0.0460 

0.0098 

0.0254 

6.2139 

31.7717 

40.6684 

73.9788 

98.4977  

33.4835 

1.0500 

1.0500 

1.0474 

1.0500 

1.0466 

1.0500 

0.9873 

1.0353 

0.9478 

0.9606 

0.0500 

0.0500 

0.0500 

0.0460 

0.0500 

0.0368 

0.0500 

0.0390 

0.0386 

11.1706 

30.4959 

48.6156 

99.6893 

60.0850 

35.3764 

1.0458 

1.0451 

1.0482 

1.0622 

1.0354 

1.0417 

0.9600 

1.0008 

1.0587 

0.9847 

0.0456 

0.0159 

0.0500 

0.0254 

0.0186 

0.0167 

0.0024 

0.0153 

0.0349 

40.6724 

46.3320 

54.3400 

39.0773 

54.7380 

51.6968 

1.0439 

1.0226 

1.0027 

1.0913 

0.9895 

1.0928 

1.0578 

1.0756 

0.9012 

0.9530 

0.0202 

0.0344 

0.0097 

0.0392 

0.0065 

0.0344 

0.0331 

0.0412 

0.0400 

6.2721 

32.6688 

45.4479 

68.7522 

99.8029 

31.7282 

1.0479 

1.0470 

1.0495 

1.0484 

1.0467 

1.0651 

0.9647 

1.0130 

1.0099 

0.9846 

0.0393 

0.0385 

0.0142 

0.0352 

0.0324 

0.0476 

0.0498 

0.0275 

0.0384 

11.4414 

30.5673 

49.2656 

99.7133 

58.8156 

35.7228 

1.0155 

1.0215 

1.0209 

1.0489 

1.0098 

1.0214 

0.9944 

0.9890 

0.9856 

0.9779 

0.0368 

0.0260 

0.0215 

0.0282 

0.0291 

0.0238 

0.0172 

0.0368 

0.0223 

39.3378 

47.4179 

55.6444 

38.2066 

54.3895 

51.5777 

1.0295 

1.0201 

1.0021 

1.0052 

0.9708 

1.0385 

1.0302 

0.9699 

0.9575 

1.0375 

0.0269 

0.0311 

0.0282 

0.0342 

0.0220 

0.0344 

0.0317 

0.0200 

0.0187 

6.3699 

24.2273 

36.0631 

82.1996 

99.8895 

36.0205 

1.0194 

1.0157 

1.0229 

1.0409 

1.0139 

1.0398 

0.9796 

0.9686 

0.9812 

0.9784 

0.0308 

0.0196 

0.0211 

0.0320 

0.0396 

0.0134 

0.0307 

0.0407 

0.0298 

12.1408 

29.4058 

50.2645 

99.3312 

58.6216 

35.6772 

1.0600 

1.0599 

1.0571 

1.0600 

1.0600 

1.0405 

1.0628 

0.9326 

1.0587 

0.9821 

0.0146 

0.0421 

0.0447 

0.0500 

0.0143 

0.0361 

0.0347 

0.0430 

0.0273 

42.4797 

44.4386 

54.6859 

41.2023 

51.9644 

51.3260 

1.0595 

1.0535 

1.0588 

1.0444 

1.0546 

1.0360 

1.1000 

0.9049 

1.1000 

0.9784 

0.0009 

0.0500 

0.0345 

0 

0.0286 

0.0365 

0.0049 

0.0500 

0.0044 

6.2734 

24.1763 

50.3077 

73.6692 

98.6881 

31.5587 

1.0600 

1.0541 

1.0595 

1.0600 

1.0555 

1.0600 

1.0239 

0.9190 

1.0327 

0.9830 

0 

0.0500 

0.0500 

0.0500 

0.0383 

0.0140 

0.0195 

0.0500 

0.0178 

Cost($/h) 

Emission 

Loss (MW) 

∑PGi(MW) 

604.6608 

0.2434 

1.8798 

285.28 

646.2704 

0.1942 

3.6094 

287.0094 

616.7591 

0.2249 

1.2139 

284.6139 

604.9608 

0.2211 

2.0400 

285.440 

645.7921 

0.1942 

3.4565 

286.86 

619.0763 

0.2224 

1.2721 

284.67 

605.0620 

0.2477 

2.1260 

285.5260 

645.4718 

0.1942 

3.1739 

286.5739 

616.1043 

0.2354 

1.3699 

284.7699 

604.8634 

0.2475 

2.0411 

285.44 

642.8147 

0.1943 

2.6970 

286.10 

617.0217 

0.2264 

1.2734 

284.67 
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Table 4: Best compromise solution of test system with various methods for tri-objectives 

Variables MOACSA NSGA-II MOPSO MODE 

PG1 (MW) 
PG2 (MW) 
PG3 (MW) 
PG4 (MW) 
PG5 (MW) 
PG6 (MW) 
V1 (p.u.) 
V2 (p.u.) 
V3 (p.u.) 
V4 (p.u.) 
V5 (p.u.) 
V6 (p.u.) 

T1 
T2 
T3 
T4 

Qc10 (p.u) 
Qc12 (p.u) 
Qc15 (p.u) 
Qc17 (p.u) 
Qc21 (p.u) 
Qc22 (p.u) 
Qc23 (p.u) 
Qc24 (p.u) 
Qc29 (p.u) 

22.2703 
31.6977 
46.0220 
61.4704 
84.8146 
38.7134 
1.0360 
1.0366 
1.0447 
1.0435 
1.0500 
1.0479 
0.9508 
1.0932 
0.9720 
0.9527 
0.0208 
0.0333 
0.0190 

0 
0.0264 
0.0500 
0.0007 
0.0417 
0.0500 

25.8574 
33.9013 
49.3873 
56.5892 
85.1319 
34.0577 
1.0507 
1.0482 
1.0534 
1.0389 
1.0379 
1.0447 
0.9570 
1.0171 
1.0085 
0.9836 
0.0381 
0.0403 
0.0176 
0.0341 
0.0303 
0.0500 
0.0500 
0.0241 
0.0365 

11.1516 
29.8121 
44.2015 
76.0960 
90.0778 
33.4891 
1.0177 
1.0151 
1.0248 
1.0482 
1.0205 
1.0358 
0.9841 
0.9742 
0.9757 
0.9753 
0.0273 
0.0210 
0.0203 
0.0325 
0.0360 
0.0146 
0.0293 
0.0391 
0.0261 

15.7933 
30.1736 
51.0804 
61.7237 
96.4820 
29.4941 
1.0600 
1.0585 
1.0599 
1.0568 
1.0533 
1.0600 
1.0386 
0.9072 
0.9984 
0.9999 
0.0179 
0.0500 

0 
0.0256 
0.0064 
0.0378 
0.0196 
0.0285 
0.0229 

Cost($/h) 
Emission 

Loss (MW) 
∑PGi(MW) 

619.0551 
0.2063 
1.5883 

284.9883 

622.4143 
0.2055 
1.5248 

284.9248 

613.1925 
0.2203 
1.4281 

284.8281 

621.0733 
0.2153 
1.3469 

284.7469 

 

7. CONCLUSIONS 

In this chapter four types of multi-objective optimization methods namely MOPSO, MODE, 
NSGA-II and MOACSA are presented to solve MOEED problem. The main target of the proposed 
methods is to find Pareto optimal set of solutions for power system control that satisfy both 
security and operational constraints simultaneously. The most important privilege of all the four 
methods is obtaining Pareto optimal front allowing the system operator to use their order of 
preference in selecting best solution for implementation. The feasibility of all the four methods for 
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solving MOEED problem is tested on standard IEEE 30-bus test system for two and three objective 
case studies. In two objective case studies only cost and emission objectives are considered with 
different operational constraints. While in three objective cases fuel cost, emission and loss 
objectives are considered with all security constraints. 
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