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Abstract: Sustainability is a multi-faceted objective for any energy production technology 

covering economic, environmental and socio-political aspects, and elements of the nuclear fuel 

cycle have impacts across all facets. The increasing use of nuclear power puts stringent demands 

on nuclear fuel cycle activities and on understanding the behavior of materials used in nuclear 

reactors. Optimized in-pile fuel performance is required to ensure the reliability and economic 

efficiency in nuclear fuel utilization. A novel optimization method based on the Simultaneous 

Perturbation Stochastic Approximation (SPSA) is proposed to maximize the system’s control 

performance. Rather than traditional controller parameter tuning method, this method optimizes 

the control system by directly using measurements of control performance. Neural network 

based predictive control solves the nonlinear tracking problems. Simulation comparison tests 

were done on nonlinear plants thereby effectiveness of the novel based predictive control is 

improved. 
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1. INTRODUCTION 

Nuclear fuel management (Turinsky and Parks, 1999; Turinsky, 2005) involves the following 
decisions: the quantity and attributes of the fresh fuel assemblies, the partially burnt fuel assemblies 
that will be reinserted, the locations of both the fresh and partially burnt fuel assemblies within the 
core, i.e., core loading pattern (LP), and for a boiling water reactors the control rod program/core 
flow (CRP/CF) strategy [9].These decisions need to be made for each reload cycle.  

The objective of nuclear fuel management is to minimize the nuclear fuel cycle cost while 
satisfying the cycle energy requirement. This must be done such that all safety and operational 
constraints are satisfied with sufficient margin. Many fuel-shuffling methods have been studied to 
satisfy these objectives, that is, to obtain the optimal loading patterns. Some of these methods are 
as follows: linear programming, dynamic programming, variational OCT, perturbation theory, 
direct search, heuristic search. Discroll et al., 1990)[1]. None of these optimization approaches 
ensure the global optimum solution because of the limitations of their search algorithms; they can 
only find near-optimum solutions (Kim et al., 1997)[4]. 
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One of the most promising long term solutions is to switch to alternative, non-polluting, primary 
energy sources. S.Jiang, (2008) have used several NNs in order to predict core parameters for 
PWRs.[3] They have employed a rule based system and the simulated annealing technique, 
respectively to optimize LPs. Ziver et al. (2004) used several NNs to predict reactor parameters for 
an Advanced Gas-Cooled Reactor[11].  

Erdogan and Geckinli (2003) used NNs to predict channel power distributions and keff.[2] The 
method proposed involves the application of simultaneous perturbation stochastic approximation 
(SPSA) in modeling the weight update process of an NN. The FBs (Fuel Bundles) k∞ values in a 
quarter core symmetry are used as the NN input data, and keff (in the BOC and EOC cases) as the 
NN outputs. The distributed control problem can be redefined as finding the set of NN weight 
parameters wi(T) for each Ai, i ∈ N that minimizes the approximated cost function ˆ C, where ˆ C is 
a function of wi(T). 

2. NUCLEAR FUEL CYCLE 

Nuclear reactor fuel consists of Uranium oxide or blend of mixed Uranium and Plutonium oxides. 
Energy in Nuclear reactions yields “Nuclear Fission products and minor actinides”. Hence fuel is 
subjected to treatment of : 

a) Partition the materials that are to be recycled from other radioactive elements, making up 
the waste. 

b) Condition that waste in to a form that are inert, and safe. 

Nuclear energy development was based on the expectation that recycling of the fissionable 
materials in the used fuel from today's light water reactors into advanced (fast) reactors would be 
implemented in order to extend the nuclear fuel resources. More recently, arguments have been 
made for deployment of fast reactors in order to reduce the amount of higher actinides, hence the 
longevity of radioactivity.  

The cost of the fast reactors, together with concerns about the proliferation of the technology of 
extraction of plutonium from used LWR fuel as well as the large investments in construction of 
reprocessing facilities have been the basis for arguments to defer the introduction of recycling 
technologies in many countries including US. The fuel cycle options of the 2010 MIT fuel cycle[5] 
study are re-examined in light of the expected slower rate of growth in nuclear energy today, using 
the CAFCA (Code for Advanced Fuel Cycle Analysis). The stochastic optimization tool, was used 
to identify non-inferior solutions.  
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Fig.1. Nuclear Fuel cycle 

Input parameters are categorized into three groups: 

(a) Strategy Parameters: Nuclear capacity variants, reprocessing-recycling strategies, reactor 
type mixtures and load factors for each type of reactor. 

(b) Fuel Parameters: Average discharge burn up, average initial enrichment, average tail 
assay on an annual basis and aggregated for each reactor type. 

(c) Control Parameters: Share of MOX fuel in reactor fuel, lead and lag times for different 
processes and the number of spent fuel reprocessing cycles. 

Outputs are: 
Natural uranium, conversion and enrichment service requirements. 
Fresh fuel requirements and spent fuel arising. 
Total plutonium arising and separated plutonium utilization. 
Reprocessing and MOX fuel requirements. 

Reactivity requirements 

In order to start the reactor from a cold zero power (CZP) state to a hot full power (HFP) state, the 
core must have sufficient reactivity to compensate for the temperature and other defects. The 
temperature defect is the reactivity decrease due to the negative temperature coefficients, and there 
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are coolant temperature-based defects and fuel temperature-based defects. The temperature defect 
from the CZP state to the hot zero power (HZP) state comes mostly from the coolant temperature 
rise because the fuel temperature coefficient is much smaller than the moderator temperature 
coefficient. In a PWR, the magnitude of the CZP-to-HZP temperature defect varies from time to 
time during the cycle quite significantly since the moderator temperature coefficient changes 
substantially due to the change in soluble boron density. On the other hand, the HZP to HFP 
temperature defect is mostly due to the fuel temperature contribution since the fuel temperature 
increases significantly at power. 

Xenon is built up at power as a fission product and reduces core reactivity. This is called the xenon 
defect. More xenon is built up after the shutdown because more xenon is produced by the decay of 
iodine than it is lost by absorption or decay during the reactor operation. The xenon worth peaks 
about 6 hours after the reactor shutdown.[8] Thus for immediate startup after the reactor shutdown, 
the additional xenon should be compensated by the fuel reactivity. This is called xenon override. In 
addition to the temperature and xenon defects, there is a defect due to neutron leakage, which is 
unavoidable in a finite physical system. The last reactivity component to be compensated for is fuel 
depletion. Since the reactivity of the fuel diminishes in general as the fuel burns out and also the 
reactor must be operating at the end of cycle, the fuel depletion effect should be included in the 
initial reactivity. The amount of reactivity loss due to fuel depletion is dependent on the cycle 
length and the types of the fuel used.  

Table 1. Reactivity requirements for HFP fuel cycle 

 

Simultaneous Perturbation Stochastic Approximation: 

The problem of online tuning the model on the basis of measures with available sensors should be 
faced. Two distinct approximate blocks are defined with mathematical structures (with SPSA) and 
unknown parameters(using ANN). 
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The simultaneous perturbation approximation has all elements of θ ^ (K) randomly perturbed 
together to obtain two measurements of y (·), but each component gki θ^ (k) is formed from a ratio 
involving the individual components in the perturbation vector and the difference in the two 
corresponding measurements. For two sided simultaneous perturbation, we have 

gki θ^ (k) = y(θ ^k+ ck ∆k) - y(θ ^ k -ck ∆k)  ->       (1) 
________________________ 

2ck∆ki 

where the distribution of the user-specified p-dimensional random perturbation vector is ∆k = 
(∆k1, ∆k2,…,∆kp)T & ck denotes a small positive number. SPSA is central to the approach by 
providing a means for making small simultaneous changes to all the signal timings in a network 
and using the information gathered in this way to update the system-wide timing strategy. By 
avoiding conventional “one-signal-at-a-time” changes to the signal timing strategies, the time it 
would take to produce an overall optimal strategy for the system is reduced from years or decades. 
SPSA works by varying all of the aim point coordinates simultaneously and running a simulation in 
the process of producing the gradient approximation for the optimization process. This procedure is 
repeated as the iteration for the optimization proceeds. This method contrasts significantly with 
conventional methods where one would vary only one of the coordinates for one of the aim points 
prior to running a simulation, repeating that process as each coordinate for each aim point was 
changed at a specified nominal set of aim points to construct a gradient approximation at the given 
nominal point. The process is repeated as the nominal aim points are varied over the course of the 
optimization. By simultaneously changing the aim points, one is able to reduce by a factor of p the 
number of simulations needed, possibly reducing the run times from days to minutes or hours. 

Artificial Neural networks assisted SPSA: 

Artificial Neural networks have been found to be an attractive tool for dynamic process modeling 
and model based control in situations where empirical model becomes impractical. Specifically it 
should be able to optimize the input space of ANN model representing process variables, (fuel 
concentration, reactor temperature etc...) such that the model output is maximized or minimized. 
SPSA methodologies need only the measurements of objective function, and not the gradient 
measurement. Uncertainties need to be classified : 

(a) Process inherent Uncertainty: Due to random variation in process parameters such as flow 
rate, temperature and pressure in the fuel cycle. 
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(b) Model inherent Uncertainty: Kinetic Constants, heat-mass transfer coefficients, physical 
properties. 
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Fig.2. SPSA Assisted ANN in Nuclear Fuel Cycle 

The purpose of training NN in the proposed algorithm is to improve the efficiency of the algorithm. 
During the iterations of SPSA, the values of objective functions and constraint functions are used. 
These values are obtained by NN. In order to solve the model, we first produce training input-
output data for the uncertain functions 

U1 : x→ E [sin(x +ξ ) + 2sin(x +ξ ) + 3sin(x +ξ )] ->      (2) 

U2 : x→ E [ |ξ x +ξ x +ξ x |]     ->        (3) 
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where x is a decision vector; ξ is a fuzzy vector,  

Choose nonnegative parameters a, c, A, α and β which are predetermined confidence levels 

Then we train an NN (3 input neurons, 5 hidden neurons, 2 output neurons) to approximate these 
uncertain functions. Then the trained NN is embedded into SPSA.  

3. SIMULATION RESULTS 

Fuel cycle reload optimization problems are restricted to following constraints: 

(a) Maximization of cycle energy production (maximizing Keff at the EOC burnup) 

(b) Radial power peaking minimization throughout the cycle. 

(c) Discharge burn up maximization. 

(d)Again EOC keff maximization but with alternative fuel loading and reduced target cycle length.  

 

Fig .3. Fuel Assembly  

The fuel assembly consists of 36 fuel pins in 6x6 matrix or 49 pins in 7x7 matrix. Each 6x6 FA has 
3 enrichments viz 2.66%, 2.1% and 1.66% while each 7x7 FA has and one fuel pin of natural 
uranium. Uncertainties in the imported fuel supply led to development of indigenous mixed oxide 
fuel (MOX) for these reactors. The objective function was recast in the form of minimization 
problem as  

  ->         (4)  

Where k, and kref represents the keff values at the target of EOC burn up of the perturbed and 
reference reloading fuel patterns. As shown in Fig.4 BOC keff is constrained to 1.0150, implying 



Optimization of Nuclear Fuel Cycle using Simultaneous Perturbation Stochastic Approximation 

Impending Power Demand and Innovative Energy Paths - ISBN: 978-93-83083-84-8 137 

that the minimum required number of burnable poisons for reactivity control was loaded. Also the 
optimum EOC keff values (Fig.5) were within 0.02% of the mean optimum keff values and the 
results are well within the Generalized Perturbed Theory. 

     

Fig 4. BOC Keff      Fig 5. EOC Keff    Fig 6.Uranium Vs Keff 

4. CONCLUSION 

Nuclear cycle core fuel management, cannot produce beforehand the design for the next fuel 
reload, and has to wait for the shut-down period to carry out his calculations. This is due to the fact 
that the exact parameters of the shut-down configuration will change the desired solution totally. 
The solution for the problem you actually got may be found by taking one known solution, and 
then modifying it - this is called reshuffling - by switching cases in the grid of the reactor core 
geometry, until you get a solution that is both admissible and good for solving your own problem. 
The SPSA algorithm has proven to be an effective stochastic optimization method. Its primary 
virtues are ease of implementation and lack of need for loss function gradient, theoretical and 
experimental support for relative efficiency, robustness to noise in the loss measurements, and 
empirical evidence of ability to find a global minimum when multiple (local and global) minima 
exist. SPSA is primarily limited to continuous-variable problems and, relative to other methods, is 
most effective when the loss function measurements include added noise. Neural networks can 
capture complex dynamics of the system yielding satisfactory predictions. ANN software is to 
obtain fast estimation tool which allows large explorations of core safety parameters. This software 
is very useful in reactor core designing and in-core fuel management or loading pattern 
optimization. This research work has extended the application of hybrid computational intelligence 
techniques to a large-scale real-world application using an simultaneous approximated algorithm. 
For such applications, the concept of effective continuous learning is of utmost importance given 
the undesirability of having to retune the control parameters from time to time. 
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