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ABSTRACT 

The paper examines the hydromagnetic thermal instability of solutes and suspended particles in 
a fluid layer in porous medium. The fluid is taken to be statically non-homogeneous confined 
between two horizontal boundaries and heated from below. We obtained the boundary conditions 
for the flow and found that the principle of exchange of stability (PES) is not valid for this 
system. The sufficient condition for stability of the system is also obtained in the paper. The 
frequency of oscillation at the marginal state and Rayleigh number are also examined. The 
characteristic equations for the non-oscillatory modes to be stable or unstable are also obtained. 
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1. INTRODUCTION 
The study of thermosolutal convection in porous medium in a heterogeneous fluid is of great 
importance. It may be important and may find applications in soil science, geophysics, 
biomechanics, and ground water hydrology and in many industrial problems such as oil recovery 
and in the chemical and nuclear industries. Recent studies of stellar atmosphere have shown the 
existence and importance of porosity in astrophysics. Chandrasekhar (1968) in his literary 
composition has given the comprehensive account of the investigations of various workers under 
different physical situations on the thermal stability of a homogeneous horizontal fluid layer in 
non-porous medium. Veronis (1965) and Nield (1967) have studied the thermosolutal convection 
under various assumptions and situations. The problem of thermal convection under porous 
medium was studied by Horton and Rogers (1945) and Lapwood (1948) and this work was 
extended by several workers such as Elder (1967), Nield (1968). 

Gupta et. al. (1985) analyzed the thermohaline convection in horizontal fluid layer of Veronis type 
with a uniform vertical rotation and magnetic field between two rigid boundaries and showed that 
the complex growth rate  of an oscillatory perturbation is neutral or unstable with wave number ρ
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 must lie inside a semi-circle. They also showed that a similar result holds good for 

stern type thermohaline convection with a uniform rotation and magnetic field. 

The effect of suspended particles in thermosolutal convection in porous medium was analyzed by 
Sharma and Rani (1987). They showed that for thermal Rayleigh number greater than or equal to 
solute Rayleigh number, principle of exchange of stabilities is valid and that the oscillatory modes 
may come into play if the thermal Rayleigh number is less than the solute Rayleigh number. 
Further, the effect of suspended particles is to destabilize the layer. It was also shown that the 
medium permeability and the stable solute gradient respectively have destabilizing and stabilizing 
effect on the system. Moreover, the rotation stabilizes a certain wave number range in 
thermosolutal convection in porous medium, which were unstable in the absence of rotation. 

Sharma and Veena Kumari (1990) discussed the thermosolutal hydromagnetic instability in visco-
elastic fluid layer heated from below. It was taken that the fluid had a statically stable solute 
gradient under a uniform magnetic field. They showed that both the magnetic field and solute 
gradient have stabilizing effect. Further, for stationary convection at the marginal state, the fluid 
behaves like a Newtonian fluid and that there was no contribution due to visco elastic character of 
the fluid. 

Allah (2000) studied the stability of a stratified, incompressible fluid confined between two 
horizontal planes through porous medium in the presence of suspended particles, rotation and 
vertical oscillation. He showed that in the absence of porous media, it is found that the rotation and 
vertical oscillations have a stabilizing effect on the stability of a stratified fluid while suspended 
particles may be stabilizing or destabilizing depending on the parameter defining the direction of 
mass concentration of suspended particles. Further, he showed that the porosity has a destabilizing 
effect in the presence of rotation and vertical oscillations and in the absence of suspended particles. 

Sharma and Aggarwal (2006) analyzed the effect of compressibility and suspended particles on 
thermal convection in Walters’ B’ Elastico-viscous fluid in hydromagnetics and found that 
compressibility and magnetic field has a stabilizing effect on the thermal stability. Rana and Kango 
(2011) have discussed the effect of suspended particles, rotation and magnetic field on the 
Thermosolutal instability in porous medium. They have derived the dispersion relation governing 
the effect of the solute concentration, suspended particles, rotation, magnetic field and medium 
permeability by applying normal mode analysis method. They found that the suspended particles 
have destabilizing effect whereas rotation and solute concentration have stabilizing effect on the 
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system. The magnetic field and medium permeability have stabilizing/destabilizing effect on the 
system depending upon certain conditions.  

In this paper, we have discussed the hydro magnetic thermosolutal instability of a fluid layer in the 
porous medium confined between free boundaries. 

2. MATHEMATICAL FORMULATION OF THE PROBLEM: 
Consider the stability of an incompressible, electrically conducting, viscous, density stratified fluid 

layer in a porous medium in the presence of a uniform magnetic field  with solute 

concentration . The fluid is taken to be statically non-homogeneous confined between two 

horizontal boundaries and heated from below. Let  and denote the uniform 

temperature of the lower and upper boundaries respectively. Then the governing equations of 
motion are  

        (1) 

                       (2) 

                  (3) 

                    (4) 

                     (5) 

               (6) 

                  (7)  

where and  denote respectively the density, pressure, magnetic 

permeability, velocity component of the fluid, viscosity, medium permeability, thermal diffusivity 
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of the fluid and solute concentration.  stands for coefficient of solute diffusion and  is the 

fluid density at lower boundary at . The whole system under force of gravity 

and is a monotonic function of vertical coordinate with . 

Let the initial state of the system be characterized by the following solution for velocity of the 
fluid, temperature, concentration of the solute, density, and magnetic field, respectively as  

           (8) 

,          (9) 

           (10) 

       (11) 

           (12) 

where  represents the uniform adverse temperature gradient maintained between the plates and  

 represents the solute concentration decreasing upward. 

3. PERTURBATION STATE:  
To analyze the stability of the fluid we perturbed the above basic state of the fluid layer, which is 
given by 

           (13) 

           (14) 

           (15) 

     (16) 

Sk 0ρ

0=z ),0,0( gX i −

)(zf z 1)0( =f

)0,0,0(=V

zTT β−= 01

( )
010 >

−
=

d

TT
β

zCC 101 β−=

( ) ( )[ ]101100 )( CCTTzf −+−+= ααρρ

( )0,0,HH =

β

1β

),,( wvuV =∗

θ+=
∗

11 TT

SCC +=
∗

11

( ) ( )







−−+−−+

∂
+=∗

SCCTTzf 10110
0

0 )( αθα
ρ

ρ
ρρ



Pranay Tanwar 

Innovations & Research in Physico-Chemical Sciences-A Step towards Sustainability 
ISBN: 978-93-83083-88-6 96 

           (17) 

          (18) 

where   and are respectively the perturbation in the velocity of 

the fluid, temperature, solute concentration, density, pressure, and the magnetic field. Substituting 
these variables in the equation (1) to (7) and taking the perturbation variables to be arbitrarily 
small, we have the linearized perturbation equation as  

       (19) 

      (20) 

         (21) 
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         (25) 

          (26) 
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         (27) 

         (28) 

         (29) 

To discuss the stability of the fluid layer, we consider the perturbation to be of the form  

          (30) 

where is some regular function of representing the perturbation variable . In 

this  is the wave number and  is the complex growth rate of the perturbation 

mode. We substitute this form of the perturbation variable in the perturbation equation (19) to (29). 
Thus we have 
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         (37) 

        (38) 

          (39) 

        (40) 

        (41) 

Multiplying the equation (31) by and equation (32) by and then adding, we get 

    (42) 

Now multiplying the equation (33) by and differentiating the equation (42) and after 
subtracting, we get 

 

       (43) 

where represent the coefficient of viscosity. 
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            (44) 

       (45) 

       (46) 

       (47) 

also, from equations (44) to (47) after using the dimensionless quantities 
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The dimensionless quantities are 
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,        (49) 

In equations (44) to (48), star symbol on quantities defined in equation (49) have been dropped. 

4. BOUNDARY CONDITIONS: 
The boundaries are free and following Chandrasekhar (1961), the boundary conditions are 

 at  and       (50) 

5. PRINCIPLE OF EXCHANGE OF STABILITIES IS NOT VALID: 

If possible, let us say that the principle of exchange of stabilities is valid, is characterized by

. Putting in equation (44) to (47), we find that the solution satisfying the boundary 
conditions (50) are  

 

This shows that the initial state solutions are not perturbed, which is a contradiction. Thus 
stationary marginal state cannot exist and the PES is invalid for this problem. 

6. SUFFICIENT CONDITION FOR THE STABILITY OF THE SYSTEM: 
In this section, we analyze the nature of perturbation modes, for this we will solve the eigen value 
problem consisting of equation (44) to (47) together with the boundary conditions (50) and take the 
solution of the form 

 , where is a constant. 

we take the smallest value of n, that is n=1 and take the solution as  

           (51) 
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               (52) 

From equation (45) and (46), we find the particular solution for and . They are 

       (53) 

and  

         (54) 

Now eliminating and from equation (52) to (54), we get 
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where,  
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since  is the complex growth rate of the perturbations and we can express where 

and are real and represents the oscillatory character of the perturbations. Substituting the 

value of in equation (56) and taking the real part of the equation, we have for non-oscillatory 

modes ,  

 

                  (57) 

It is clear from the above equation that if 

,   

and  

 

This implies that coefficient of in equation (57) is definite positive while the last bracket term is 

positive or negative. Then the value of is either positive or negative. Therefore, non-oscillatory 

mode is either unstable or stable according as last bracket term is positive or negative. 

7. MARGINAL STATE OF THE SYSTEM 
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            (58) 

Separating the real and imaginary parts of the equation (58), we get 

             (59) 

and  

                    (60) 

After eliminating the Rayleigh number from equation (59) and (60), we find the frequency of 
oscillation at the marginal state and the Rayleigh number is given by equation (59) and its 

minimum value is called the critical wave numbers  and frequency . 

NATURE OF NON-OSCILLATORY MODES: 

Let us say that non-oscillatory modes exist for which  is zero and , is real. Hence 

substituting in equation (56), we get 

             (61) 
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where,  

 

and  

 

Equation (61) is the characteristic equation which implies that 

Since this implies that and product of all five roots is positive, therefore at least 

one root is positive, thus making the system unstable. Therefore, we conclude that non-oscillatory 
modes are unstable. 

If  this implies that and product of all five roots is negative, hence either all roots 

are negative or at least one root is positive thus both negative and positive roots are possible. 

Therefore, we conclude that if then non-oscillatory modes may be stable or unstable. 
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