Nuclear Structure of the Neutron-deficient ¹³²Ce

Parveen Kumari¹, Harish Mohan Mittal²

Department of Physics Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab-144011, INDIA

ABSTRACT

The present study related with a current topic of interest i.e. odd-even staggering in the gamma band of 132 Ce nucleus. The experimental and theoretical details of 132 Ce nucleus are discussed. The energy levels of the ground as well as gamma band have been calculated using Soft Rotor Formula. Davydov-Filippov energy gap relations are also used in order to find the nature of 132 Ce nucleus. The purpose of the present work is to study the ground and gamma band of 132 Ce nucleus. It is found that 132 Ce is a γ -soft nucleus.

Keywords: Soft rotor formula, energy staggering, γ -soft nucleus.

1. INTRODUCTION

The neutron deficient Cerium isotopes have the properties of rotational nuclei [1] and with increasing neutron number, the energy level structure changes very slowly and smoothly, rather than as there is a sharp shape phase transition occurs for neutron rich nuclei (N>82). The variation with neutron number N is very interesting in Cerium nuclei.

1.1 Experimental details of ¹³²Ce nucleus

In 1984, Sakai [2] illustrated the ground and few γ -band energy levels. After few years, Kortelahti et al., [1] studied the ¹³²Ce nucleus by measuring the γ -*ray* singles and $\gamma\gamma$ -*t* coincidences in the β^+ -decay and constructed the level scheme of ^{130, 132}Ce nuclei, in which the ground-band was labeled up to 6⁺ spin state and γ -band was labeled up to 5⁺ spin state and another three levels (at 1497, 1734 and 2508 keV) were included without assigning spin and parity values (I^{π}).

Gade et al., [3] illustrated the new level scheme for ¹³²Ce nucleus and added the excited band based on the K=0⁺₂ state and also confirmed the three levels of Kortelahti et al., [1] cited above and assigned them spin I values of 2⁺₃, 2⁺₄ and (2, 3, 4) respectively. A new level at 1932.1 keV was also reported named as 4⁺₃ state. They compared the level structure with ^{128, 132}Ba and noted some similarities in their band structures and the γ -soft character.

1.2 Theoretical details of ¹³²Ce nucleus

By using O(6) symmetry of Interacting Boson Model (IBM), Gade et al., [3] derive the interband B(E2) ratios of ¹³²Ce. The variation of N with B(E2, I \rightarrow I-2) in the yrast band was discussed by Muller et al., [4]. Gupta [5, 6] studied the Ce isotopes by using IBM-1. Recently, Gupta and Kumar [7] discussed the nuclear structure of ¹³⁰⁻¹³⁶Ce by using IBM and DPPQ model.

2. PRESENT WORK

Present search is related to the study of γ -band of ¹³²Ce nucleus by using soft rotor formula. The Soft Rotor Formula (SRF),

$$E = \frac{I(I+1)}{J_0(1+\alpha I)}$$

where J_0 is the moment of inertia parameter and α is the variable of moment of inertia parameter. By using $2_2^+ \& 4_2^+$ gamma band energies in even sequences and $3_1^+ \& 5_1^+$ energies in odd sequence, the values of J_0 and α can be calculated.

Firstly, Brentano et al., [8] used this SRF for ground band and after few years Bihari et al., [9] proposed this formula for gamma band. Recently, Mittal and Kumari [10] suggested the SRF formula for the study multiphonon 2γ -band and also discussed the nature of multiphonon 2γ -band of ¹⁵⁸Dy nucleus. Zamfir and Casten [11] suggested a number of signatures of γ -softness vs. γ -rigidity in nuclei, and they give attention in the staggering properties of γ -band. Staggering indices which may be defined as relative displacement of the odd angular momentum levels w.r.t. their neighboring levels with even angular momentum. Staggering formula written as

$$S(I, I-1, I-2) = \frac{(E_1 - E_{I-1}) - (E_{I-1} - E_{I-2})}{E_{2_1}^+}$$

and it shows alternative behavior with spin I. For even spin values, it is found to be positive and for odd spin values, it is found to be negative.

3. RESULTS AND DISCUSSION

The energy levels for ground and gamma band of ¹³²Ce nucleus are plotted in Fig.1.

Fig.1: Comparison between experimental and calculated energy values of the ground and γband using SRF formula.

The calculated values of J_0 and α for ground band and for odd & even sequences of gamma band are listed in Table 1. For ¹³²Ce nucleus, the sign of J_0 and α are positive for ground band energies and also for gamma band energies. This is also an indication that ¹³²Ce nucleus is a γ -soft nucleus.

Fig. 2: Staggering indices S(I) is plotted versus spin (I) in the present work for ¹³²Ce nucleus using SRF formula for γ-band.

Other points of indication of γ -soft nuclei are

- The levels of γ -band are grouped as 2⁺, (3⁺, 4⁺), (5⁺, 6⁺), in ¹³²Ce (see Fig.1) is also a characteristic of γ -soft nucleus.
- Davydov-Filippov energy gap relations [12]

 $\Delta E1[=E3_1^+ - (E2_1^+ + E2_2^+)] \qquad \text{and} \qquad$

 $\Delta E2[=E3_1^+ - (2E2_1^+ + E4_1^+)].$

- These relations are mainly used to distinguish the nuclei which belong to the triaxial region and also used to recognize the difference between γ -rigid and γ -soft nuclei. Here as resulted that $\Delta E1 \gg \Delta E2$ (see Table 2), which is also a proof of γ -soft nucleus.
- The variation of staggering indices S(I) with spin I for ¹³²Ce nucleus is shown in Fig.2. The spacing between odd-even spin levels in the present work show good agreement with experimental values for S(4), S(5), S(6) of γ -band.
- In ¹³²Ce nucleus, the experimental values of S(I) have alternative values with spin I and S(4) is negative which shows that this nucleus is γ -soft in nature.

4. CONCLUSION

To summarize, here we tried to show that SRF formula is prosperous to explain the gamma band energy and also facilitative to find the new energy levels of ¹³²Ce nucleus. The Davydov-Filippov energy gap relation is found to be applicable on this nucleus. Interestingly, on the bases of staggering indices, Davydov-Filippov energy gap relation and the value of parameters J_0 and α of SRF formula that ¹³²Ce is a γ -soft nucleus.

REFERENCES

- [1] Kortelahti MO, Kern BD, Braga RA, Fink RW, Girit IC, Mlekodaj RL. Transitional nuclei in the rareearth region: Energy levels and structure of ^{130, 132}Ce, ^{132, 134}Nd, and ¹³⁴Pm, via β decay of ^{130, 132}Pr, ^{132, 134}Pm, and ¹³⁴Pm, and ¹³⁴Sm. Phys. Rev. C 1990; 42: 1267.
- [2] Sakai M. Quasi-Bands in even-even nuclei. At. Data & Nucl. Data Tables 1984; 31: 399–432.
- [3] Gade A, Wiedenhover I, Diefenbach T, Gelberg A, Luig M, Meise H, Pietralla N, Wilhelm M, Otsuka T, Brentano P von. Non-yrast states of ¹³²Ce polutated in β -decay. Nucl. Phys. A 1998; 643: 225–242.
- [4] Muller-Veggian M, Beuscher H, Haenni DE, Lieder RM, Neskakis A. Study of the level structure in ¹³⁴Ce. Nucl. Phys. A 1984; 417:189–208.
- [5] Gupta JB, Kavathekar AK. DAE Symp. on Nucl. Phys. 2000; 43: 242.

- [6] Gupta JB. DAE Symp. on Nucl. Phys. 2004; 47: 152.
- [7] Gupta JB, Kumar K. Nuclear structure of ¹³⁰⁻¹³⁶Ce in IBM and DPPQ model. Nucl. Phys. A 2012; 882: 21–43.
- [8] Brentano P von, Zamfir NV, Casten RF, Rellergert WG, McCutchan EA. New yrast energy formula for soft rotors. Phys. Rev. C 2004; 69: 044314-1—044314-4.
- [9] Bihari C, Singh M, Singh Y, Varshney AK, Gupta KK, Gupta DK. A new signature of the triaxial region in even nuclei. Phys. Scr. 2008; 77: 055201-1—055201-7.
- [10] Mittal HM, Kumari P. Search the nature of multiphonon 2γ-band of ¹⁵⁸Dy. DAE Symp. on Nucl. Phys. 2013; 58: 86—87.
- [11] Zamfir NV, Casten RF. Signatures of γ softness or triaxiality in low energy nuclear spectra. Phys. Lett. B 1991; 260: 265–270.
- [12] Davydov AS, Filippov GF. Rotational states in even atomic nuclei. Nucl. Phys. B 1958; 8: 237-249.

Bands J₀ J_{0(even)} J_{0(odd)} α $\alpha_{(even)}$ $\alpha_{(odd)}$ g-band 0.0136 0.1767 γ-band 0.0001 0.0002 24.214 14.333

TABLES

Table 1: Fitted parameters J_0 and α used in present work.

For γ -band ¹³² Ce	$\Delta E1[=E3_1^+ - (E2_1^+ + E2_2^+)]$	$\Delta E2[=E3_1^+ - (2E2_1^+ + E4_1^+)]$
	51.94	-310.19

Table 2: Experimental value of energy differences $\Delta E1$ and $\Delta E2$ for γ -band.