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Abstract: We are living in an age when an explosive amount of 

data is being generated every day. Data from sensors, mobile 

devices, social networking websites, scientific data & enterprises 

– all are contributing to this huge explosion in data. This sudden 

bombardment can be grasped by the fact that we have created a 

vast volume of data in the last two years. Big Data- as these large 

chunks of data is generally called- has become one of the hottest 

research trends today. Research suggests that tapping the 

potential of this data can benefit businesses, scientific disciplines 

and the public sector – contributing to their economic gains as 

well as development in every sphere. The need is to develop 

efficient systems that can exploit this potential to the maximum, 

keeping in mind the current challenges associated with its 

analysis, structure, scale, timeliness and privacy. The answer lies 

in Hadoop. 
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1. INTRODUCTION 

Big Data is the hottest trend in the business and IT world right 
now. We are living in the age of big data where due to the 
rapid development in the computational power and the WWW, 
we are producing an overwhelming amount of data, which has 
led to the need of a change in the existing architectures and 
mechanisms of the data processing systems. Big data- as these 
large chunks of data is generally called has redefined the 
current data processing scenario. The changes in the Web have 
been defined by analysts such as Gartner and others for 
describing Big Data as: 

• Velocity – how fast the data is entering the systems 

• Variety – includes all types of structured and unstructured 
data 

• Volume – the potential data capacity of terabytes to 
petabytes 

• Complexity – includes everything from transferring 
operational data to big data platforms and the trouble with 
managing the data across many geographies and 
locations. 

From consumers to companies, people have an unquenchable 
appetite for data and all that can be done with it. Not only are 
we relying on data for movie suggestions and gift 
recommendations but are depending on data for 
multidisciplinary climate and energy research, building 
adaptable roads and buildings, better foresighted healthcare, 
new ways to identify fraud, and keeping a check on consumer 
behaviour and sentiment. It’s a data feast and is not going to 
end any time soon. 

In the past, enterprise systems used to be principal sources of 
data, but today many additional sources are contributing to the 
data pool: sensors, social networking sites, web blogs, internet 
chat rooms, product review websites, online communities, 
Web pages, email, images, documents, videos and music. This 
is often topsy-turvy – unstructured– and seems somewhat out 
of the place in the ordered – structured – world of the past. 
Data has become a factor of production, according to The 
Economist’s report, almost on par with labour and capital. 
IDC has predicted that the digital world will be 44 times in 
2020 of what it was in 2009, totalling a whopping 35 zeta 
bytes. EMC has reported the number of customers who are 
storing a petabytes or more of data to grow from 1,000 to 
100,000 within the next 10 years. 

There has been a shift in the architecture of data-processing 
systems today, from the centralized architecture to the 
distributed architecture. Enterprises face the challenge of 
processing these huge chunks of data, and have found that 
none of the existing centralized architectures can efficiently 
handle this huge volume of data. These are thus utilizing 
distributed architectures to harness this data. Several solutions 
to the Big Data problem have emerged which includes the 
Map Reduce environment championed by Google which is 
now available open-source in Hadoop. Hadoop’s distributed 
processing, Map Reduce algorithms and overall architecture 
are a major step towards achieving the promised benefits of 
Big Data. 

Map Reduce & Hadoop are the most widely used models used 
today for Big Data processing. Hadoop is an open-source 
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large-scale data processing framework that supports 
distributed processing of large chunks of data using simple 
programming models. The Apache Hadoop project consists of 
the HDFS and Hadoop Map Reduce in addition to other 
modules. The software is modelled to harvest upon the 
processing power of clustered computing while managing 
failures at node level. The Map Reduce software framework 
which was originally introduced by Google in 2004 is a 
programming model, which now adopted by Apache Hadoop, 
consists of splitting the large chunks of data, and ‘Map’ & 
‘Reduce’ phases (Fig. 1). The Map Reduce framework handles 
task scheduling, monitoring and failures. 

 

Fig. 1 Map Reduce in Hadoop [5] 

2. DISCUSSION 

2.1 Introduction to Hadoop 

Hadoop is an industrial scale batch processing distributed 
computing tool. It has the capability to connect computers 
with multiple processor cores with a scale ranging from 
hundreds to thousands. Vast volumes of data can be efficiently 
distributed across clusters of computers using Hadoop. 

The Hadoop scale consists of hundreds of gigabytes of data at 
the least. Hadoop has been built with the capability to manage 
vast data sets whose size can easily lie between couple of 
gigabytes to thousands of petabytes. Hadoop provides its 
solution in the form of a Distributed File System which splits 
the data and stores it in several different machines. This 
enables parallel processing of the problem and efficient 
computation is possible.  

The design of Hadoop is such that it can efficiently manage 
vast quantity of data sets by taking advantage of clustered 
computing or by connecting hundred of machines with 
processing power in parallel. Theoretically speaking, a single, 
powerful thousand CPU machine would be much more 
expensive than thousands of machines with individual CPUs 

thus making it an easier investment. Hadoop offers a cost 
effective solution by tying these smaller and cheaper machines 
together. 

2.2 Distribution of Data 

After the data is loaded into clusters in Hadoop it is distributed 
to all the nodes. The HDFS then splits the data into sets which 
allow management by individual nodes within the cluster. To 
handle unavailability of data due to failure, each part is also 
replicated across the cluster. The data is also re-replicated in 
response to failure of the system. All these parts of data are 
easily accessible through a universal namespace, despite the 
parts being distributed and replicated on multiple machines. 

Hadoop follows the policy of “Moving computation to the 
data” (Fig. 2). As such, data is broken into formats in 
accordance with the application logic. Hadoop programming 
framework is record-oriented. A node in the cluster processes 
a subset of records by a process(s) which are then scheduled 
using the location information in the file system. The 
computation is moved to the closest location of the availability 
of data. Unnecessary data transfers are avoided since much of 
the information is read from the locally available disk system. 
Each process on a node processes a subset of data. This 
strategy greatly enhances performance because of high data 
locality.  

 

Fig. 2 Moving computation to the data [4] 

2.3. Hadoop Distributed File System 

HDFS or the Hadoop Distributed File System, is a clustered 
file management system which aims to hold large datasets 
(ranging from gigabytes, terabytes to petabytes), and provides 
high-throughput & quick access to data. The systems stores 
the files in a redundant manner through a number of machines 
to ensure that they are fault-tolerant and available to very 
parallel applications.  
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The design of HDFS is closely linked to the Google File 
System or the GFS. 

The file system of HDFS is block-structured in which files are 
broken down into small units of a size that is specified. These 
units or blocks can then be stored through a loop or clusters of 
multiple, data storage computing capability. The computing 
systems in each cluster are called DataNodes (Fig. 3). A file 
can consist multiple blocks, and it is not necessary that they 
are stored on the same machine as the decision where each 
block will be stored is randomly selected. As such, locating 
particular file needs cooperation from multiple machines. If 
multiple machines are needed in serving a file, then a file 
could become unavailable even if a single machine in the 
cluster is lost. HDFS handles this issue by replicating each 
block across multiple systems which is set to 3 as default. 

Block sizes ranging from four to eight kilobytes are used by 
file systems structured in blocks, mostly. On the other hand, 
block size of 64MB is used in HDFS by default which is much 
larger. 

It is necessary that this file system stores the metadata reliably. 
Also, when the file data is being accessed in a WORM model, 
the structures of the metadata may be modified – even by 
multiple client systems at the same instance. It is necessary 
that this information is synchronized. Thus, the whole process 
is managed by a single system called the Name Node which 
has the metadata of the entire file system. However, because 
metadata of each file is relatively low, it is possible to store 
this whole information in main memory of Name Node 
machine, thus allowing for quicker accessibility. 

Opening a file system requires the system to contact the Name 
Node which is then returned a list of all the locations 
containing the blocks, together which comprise the file. These 
locations direct the Data Nodes which hold each block. In this 
way, the data can be read by the Data Node servers of the 
clients in parallel. Direct involvement of the Name Node is not 
there this data transfer, so its overhead is kept to a minimum. 

2.4. HDFS Architecture 

The HDFS is designed to run on clustered computing 
platform. It mirrors the already existing file nomenclature in 
many ways but its differences really make it stands out from 
existing file systems (Fig. 4). One of the salient features of 
HDFS is that it is fault-tolerant to a very high degree and cost 
effective. The system allows for greater and faster access to 
data of an application which is an advantage for processes that 
require access to large amount of data. HDFS was designed by 
Apache Nutch project as an infrastructure extension and is 
now a core component of the project. 

1. Name Node and Data Nodes: HDFS is based on a typical 
master - slave architecture. An HDFS cluster is made up 
of a single Name Node and a server acting as a master 

managing the file access and name space regulations. To 
simplify the system architecture a single name node 
exists in a cluster. The Name Node holds & manages 
whole metadata of HDFS. The design of the systems is 
such that the data does not flow through the Name Node 

 

Fig. 3 HDFS Architecture [16] 

2. The File System Namespace: HDFS supports an 
empherical file structure. Directories can be created by 
user or an application and files are stored inside those 
directories. The hierarchy of the file namespace is 
usually like the previously defined file systems. As such 
files can be created & removed, moved from one 
directory to another directory or renamed. HDFS has not 
yet implemented user quotas and access permissions. 
The Name Node handles the file system namespace. It 
records alterations and its associated properties. A 
number can also be specified for replicas of a file by the 
application which must be maintained by the HDFS 
which is defined as the replication factor and the 
information is stored in the Name Node.  

3. Data Replication: HDFS is programmed to manage last 
file stored in large cultures of data mines / structures 
while ensuring reliability. The way this is managed is by 
storing files in a sequence of blocks which are the same 
size, with the last block being an exception. These 
blocks are then replicated to test fault tolerance in which 
the size of the block and the replication factors are 
configurable. An application can then custom specify the 
number of copies of a file.  

Decisions relating to block replications are taken by the Name 
Node which receives a Heartbeat and Block Report at timed 
intervals from Data Node in a cluster. In this way it can be 
ensured that Data Node is functional in the way it is supposed 
to be. 

2.5 Map Reduce 

Map Reduce is a tool implemented for managing and 
processing vast amounts of unstructured data in parallel based 
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on division of a big work item in smaller independent task 
units. Programs which are Map Reduces are programmed to 
manage vast amounts of data in parallel. To achieve this, load 
shedding is required across multiple machines. The main 
leverage of MAPREDUCE is the tasks of similar nature are 
grouped together so that same type of data is placed on the 
same nodes. Doing this saves the sync overhead which might 
have been caused if tasks were grouped in a random order. 
MAPREDUCE data elements are immutable i.e if you change 
input (key, value) in a mapper then it will not be displayed in 
the input files. Rather it will be taken care in the next 
execution with the new output values (key, value). 

 

Fig. 4 Mapping & Reducing [24] 

1. List Processing: In concept, programs which are map 
reduced convert an array of data coming in as input into 
an array of data which is the output. The program goes 
through this process two times, using two functions 
which are mapping and reduction.  

2. List based Mapping: In a map reduce context the first 
execution phase is the MAPPER which takes the data 
elements as input and generates the corresponding output 
data elements.s 

3. List based Reduction: The Reducing part allows us to 
consolidate the values together. List of values are input 
to the reducer function from the input list and as an 
output we receive single output value. 

 

Fig. 5 The Map & Reduce Lifecycle[24] 

3. CONCLUSION 

Hadoop with its efficient DFS & programming framework 
based on concept of mapped reduction, is a powerful tool to 
manage large data sets. With its map-reduce programming 
paradigms, overall architecture, ecosystem, fault- tolerance 
techniques and distributed processing, Hadoop offers a 
complete infrastructure to handle Big Data. Users must 
leverage the benefits of Big-Data by adopting Hadoop 
infrastructure for data processing. However, the issues such as 
lack of flexible resource management, application deployment 
support, and multiple data source support pose a challenge to 
Hadoop’s adoption. Proper skill training is also needed for 
achieving large scale data analysis. These challenges must be 
overcome so that we can tap the full potential of Hadoop data 
management power. 
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