
Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 9; October, 2014 pp. 93-97
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/jbaer.html

Bundling Hadoop & Map Reduce for Data-Intensive
Computing in Distributed Systems

Sanchita Kadambari
1
, Kalpana Jaswal

2
, Praveen Kumar

3
, Seema Rawat

4

1,2
M.Tech (CS&E), Amity University, Noida

3,4
Amity University, Noida

Abstract: We are living in an age when an explosive amount of

data is being generated every day. Data from sensors, mobile

devices, social networking websites, scientific data & enterprises

– all are contributing to this huge explosion in data. This sudden

bombardment can be grasped by the fact that we have created a

vast volume of data in the last two years. Big Data- as these large

chunks of data is generally called- has become one of the hottest

research trends today. Research suggests that tapping the

potential of this data can benefit businesses, scientific disciplines

and the public sector – contributing to their economic gains as

well as development in every sphere. The need is to develop

efficient systems that can exploit this potential to the maximum,

keeping in mind the current challenges associated with its

analysis, structure, scale, timeliness and privacy. The answer lies

in Hadoop.

Keywords: big data, data revolution, analysis, Hadoop, Map

Reduce

1. INTRODUCTION

Big Data is the hottest trend in the business and IT world right
now. We are living in the age of big data where due to the
rapid development in the computational power and the WWW,
we are producing an overwhelming amount of data, which has
led to the need of a change in the existing architectures and
mechanisms of the data processing systems. Big data- as these
large chunks of data is generally called has redefined the
current data processing scenario. The changes in the Web have
been defined by analysts such as Gartner and others for
describing Big Data as:

• Velocity – how fast the data is entering the systems

• Variety – includes all types of structured and unstructured
data

• Volume – the potential data capacity of terabytes to
petabytes

• Complexity – includes everything from transferring
operational data to big data platforms and the trouble with
managing the data across many geographies and
locations.

From consumers to companies, people have an unquenchable
appetite for data and all that can be done with it. Not only are
we relying on data for movie suggestions and gift
recommendations but are depending on data for
multidisciplinary climate and energy research, building
adaptable roads and buildings, better foresighted healthcare,
new ways to identify fraud, and keeping a check on consumer
behaviour and sentiment. It’s a data feast and is not going to
end any time soon.

In the past, enterprise systems used to be principal sources of
data, but today many additional sources are contributing to the
data pool: sensors, social networking sites, web blogs, internet
chat rooms, product review websites, online communities,
Web pages, email, images, documents, videos and music. This
is often topsy-turvy – unstructured– and seems somewhat out
of the place in the ordered – structured – world of the past.
Data has become a factor of production, according to The
Economist’s report, almost on par with labour and capital.
IDC has predicted that the digital world will be 44 times in
2020 of what it was in 2009, totalling a whopping 35 zeta
bytes. EMC has reported the number of customers who are
storing a petabytes or more of data to grow from 1,000 to
100,000 within the next 10 years.

There has been a shift in the architecture of data-processing
systems today, from the centralized architecture to the
distributed architecture. Enterprises face the challenge of
processing these huge chunks of data, and have found that
none of the existing centralized architectures can efficiently
handle this huge volume of data. These are thus utilizing
distributed architectures to harness this data. Several solutions
to the Big Data problem have emerged which includes the
Map Reduce environment championed by Google which is
now available open-source in Hadoop. Hadoop’s distributed
processing, Map Reduce algorithms and overall architecture
are a major step towards achieving the promised benefits of
Big Data.

Map Reduce & Hadoop are the most widely used models used
today for Big Data processing. Hadoop is an open-source

94 Sanchita Kadambari, Kalpana Jaswal, Praveen Kumar, Seema Rawat

Journal of Basic and Applied Engineering Research (JBAER)
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 9; October, 2014

large-scale data processing framework that supports
distributed processing of large chunks of data using simple
programming models. The Apache Hadoop project consists of
the HDFS and Hadoop Map Reduce in addition to other
modules. The software is modelled to harvest upon the
processing power of clustered computing while managing
failures at node level. The Map Reduce software framework
which was originally introduced by Google in 2004 is a
programming model, which now adopted by Apache Hadoop,
consists of splitting the large chunks of data, and ‘Map’ &
‘Reduce’ phases (Fig. 1). The Map Reduce framework handles
task scheduling, monitoring and failures.

Fig. 1 Map Reduce in Hadoop [5]

2. DISCUSSION

2.1 Introduction to Hadoop

Hadoop is an industrial scale batch processing distributed
computing tool. It has the capability to connect computers
with multiple processor cores with a scale ranging from
hundreds to thousands. Vast volumes of data can be efficiently
distributed across clusters of computers using Hadoop.

The Hadoop scale consists of hundreds of gigabytes of data at
the least. Hadoop has been built with the capability to manage
vast data sets whose size can easily lie between couple of
gigabytes to thousands of petabytes. Hadoop provides its
solution in the form of a Distributed File System which splits
the data and stores it in several different machines. This
enables parallel processing of the problem and efficient
computation is possible.

The design of Hadoop is such that it can efficiently manage
vast quantity of data sets by taking advantage of clustered
computing or by connecting hundred of machines with
processing power in parallel. Theoretically speaking, a single,
powerful thousand CPU machine would be much more
expensive than thousands of machines with individual CPUs

thus making it an easier investment. Hadoop offers a cost
effective solution by tying these smaller and cheaper machines
together.

2.2 Distribution of Data

After the data is loaded into clusters in Hadoop it is distributed
to all the nodes. The HDFS then splits the data into sets which
allow management by individual nodes within the cluster. To
handle unavailability of data due to failure, each part is also
replicated across the cluster. The data is also re-replicated in
response to failure of the system. All these parts of data are
easily accessible through a universal namespace, despite the
parts being distributed and replicated on multiple machines.

Hadoop follows the policy of “Moving computation to the
data” (Fig. 2). As such, data is broken into formats in
accordance with the application logic. Hadoop programming
framework is record-oriented. A node in the cluster processes
a subset of records by a process(s) which are then scheduled
using the location information in the file system. The
computation is moved to the closest location of the availability
of data. Unnecessary data transfers are avoided since much of
the information is read from the locally available disk system.
Each process on a node processes a subset of data. This
strategy greatly enhances performance because of high data
locality.

Fig. 2 Moving computation to the data [4]

2.3. Hadoop Distributed File System

HDFS or the Hadoop Distributed File System, is a clustered
file management system which aims to hold large datasets
(ranging from gigabytes, terabytes to petabytes), and provides
high-throughput & quick access to data. The systems stores
the files in a redundant manner through a number of machines
to ensure that they are fault-tolerant and available to very
parallel applications.

Bundling Hadoop & Map Reduce for Data-Intensive Computing in Distributed Systems 95

Journal of Basic and Applied Engineering Research (JBAER)
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 9; October, 2014

The design of HDFS is closely linked to the Google File
System or the GFS.

The file system of HDFS is block-structured in which files are
broken down into small units of a size that is specified. These
units or blocks can then be stored through a loop or clusters of
multiple, data storage computing capability. The computing
systems in each cluster are called DataNodes (Fig. 3). A file
can consist multiple blocks, and it is not necessary that they
are stored on the same machine as the decision where each
block will be stored is randomly selected. As such, locating
particular file needs cooperation from multiple machines. If
multiple machines are needed in serving a file, then a file
could become unavailable even if a single machine in the
cluster is lost. HDFS handles this issue by replicating each
block across multiple systems which is set to 3 as default.

Block sizes ranging from four to eight kilobytes are used by
file systems structured in blocks, mostly. On the other hand,
block size of 64MB is used in HDFS by default which is much
larger.

It is necessary that this file system stores the metadata reliably.
Also, when the file data is being accessed in a WORM model,
the structures of the metadata may be modified – even by
multiple client systems at the same instance. It is necessary
that this information is synchronized. Thus, the whole process
is managed by a single system called the Name Node which
has the metadata of the entire file system. However, because
metadata of each file is relatively low, it is possible to store
this whole information in main memory of Name Node
machine, thus allowing for quicker accessibility.

Opening a file system requires the system to contact the Name
Node which is then returned a list of all the locations
containing the blocks, together which comprise the file. These
locations direct the Data Nodes which hold each block. In this
way, the data can be read by the Data Node servers of the
clients in parallel. Direct involvement of the Name Node is not
there this data transfer, so its overhead is kept to a minimum.

2.4. HDFS Architecture

The HDFS is designed to run on clustered computing
platform. It mirrors the already existing file nomenclature in
many ways but its differences really make it stands out from
existing file systems (Fig. 4). One of the salient features of
HDFS is that it is fault-tolerant to a very high degree and cost
effective. The system allows for greater and faster access to
data of an application which is an advantage for processes that
require access to large amount of data. HDFS was designed by
Apache Nutch project as an infrastructure extension and is
now a core component of the project.

1. Name Node and Data Nodes: HDFS is based on a typical
master - slave architecture. An HDFS cluster is made up
of a single Name Node and a server acting as a master

managing the file access and name space regulations. To
simplify the system architecture a single name node
exists in a cluster. The Name Node holds & manages
whole metadata of HDFS. The design of the systems is
such that the data does not flow through the Name Node

Fig. 3 HDFS Architecture [16]

2. The File System Namespace: HDFS supports an
empherical file structure. Directories can be created by
user or an application and files are stored inside those
directories. The hierarchy of the file namespace is
usually like the previously defined file systems. As such
files can be created & removed, moved from one
directory to another directory or renamed. HDFS has not
yet implemented user quotas and access permissions.
The Name Node handles the file system namespace. It
records alterations and its associated properties. A
number can also be specified for replicas of a file by the
application which must be maintained by the HDFS
which is defined as the replication factor and the
information is stored in the Name Node.

3. Data Replication: HDFS is programmed to manage last
file stored in large cultures of data mines / structures
while ensuring reliability. The way this is managed is by
storing files in a sequence of blocks which are the same
size, with the last block being an exception. These
blocks are then replicated to test fault tolerance in which
the size of the block and the replication factors are
configurable. An application can then custom specify the
number of copies of a file.

Decisions relating to block replications are taken by the Name
Node which receives a Heartbeat and Block Report at timed
intervals from Data Node in a cluster. In this way it can be
ensured that Data Node is functional in the way it is supposed
to be.

2.5 Map Reduce

Map Reduce is a tool implemented for managing and
processing vast amounts of unstructured data in parallel based

96 Sanchita Kadambari, Kalpana Jaswal, Praveen Kumar, Seema Rawat

Journal of Basic and Applied Engineering Research (JBAER)
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 9; October, 2014

on division of a big work item in smaller independent task
units. Programs which are Map Reduces are programmed to
manage vast amounts of data in parallel. To achieve this, load
shedding is required across multiple machines. The main
leverage of MAPREDUCE is the tasks of similar nature are
grouped together so that same type of data is placed on the
same nodes. Doing this saves the sync overhead which might
have been caused if tasks were grouped in a random order.
MAPREDUCE data elements are immutable i.e if you change
input (key, value) in a mapper then it will not be displayed in
the input files. Rather it will be taken care in the next
execution with the new output values (key, value).

Fig. 4 Mapping & Reducing [24]

1. List Processing: In concept, programs which are map
reduced convert an array of data coming in as input into
an array of data which is the output. The program goes
through this process two times, using two functions
which are mapping and reduction.

2. List based Mapping: In a map reduce context the first
execution phase is the MAPPER which takes the data
elements as input and generates the corresponding output
data elements.s

3. List based Reduction: The Reducing part allows us to
consolidate the values together. List of values are input
to the reducer function from the input list and as an
output we receive single output value.

Fig. 5 The Map & Reduce Lifecycle[24]

3. CONCLUSION

Hadoop with its efficient DFS & programming framework
based on concept of mapped reduction, is a powerful tool to
manage large data sets. With its map-reduce programming
paradigms, overall architecture, ecosystem, fault- tolerance
techniques and distributed processing, Hadoop offers a
complete infrastructure to handle Big Data. Users must
leverage the benefits of Big-Data by adopting Hadoop
infrastructure for data processing. However, the issues such as
lack of flexible resource management, application deployment
support, and multiple data source support pose a challenge to
Hadoop’s adoption. Proper skill training is also needed for
achieving large scale data analysis. These challenges must be
overcome so that we can tap the full potential of Hadoop data
management power.

REFERENCES

[1] Yahoo! Inc, Hadoop Tutorial from Yahoo! Available:
http://developer.yahoo.com/hadoop/tutorial/index.html

[2] Jens Dittrich and JorgeArnulfo Quian´eRuiz, " Efficient Big
Data processing in Hadoop Mapreduce," Proceedings of the

VLDB Endowment, Volume 5 Issue 12, August 2012, Pages
2014-2015

[3] Jens Dittrich, Stefan Richter and Stefan Schuh, " Efficient OR
Hadoop: Why Not Both?," Datenbank-Spektrum, Volume 13,
Issue 1, pp 17-22

[4] Humbetov, S, "Data-Intensive Computing with Map-reduce and
Hadoop," in Proc. 2012 Application of Information and

Communication Technologies (AICT), IEEE,6th International

Conference pp. 5

[5] Hadoop Tutorial, Apache Software Foundation, 2014,
Available: http://hadoop.apache.org/

[6] Sherif Sakr, Anna Liu and Ayman G. Fayoumi, " The family of
mapreduce and large-scale data processing systems," ACM

Computing Surveys, Volume 46 Issue 1, October 2013, Article
No. 11

[7] Aditya B. Patel, Manashvi Birla and Ushma Nair, " Addressing
Big Data Problem Using Hadoop and Map Reduce," in Proc.

2012 Nirma University International Conference On

Engineering, pp. 1-5.

[8] Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Rasin, A., and
Silberschatz, A. 2009. HadoopDB: An architectural hybrid of
mapreduce and dbms technologies for analytical workloads.
Proc. VLDB Endow. 2, 1,922–933.

[9] Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Rasin, A., and
Silberschatz, A. 2010. HadoopDB in action: Building real world
applications. In Proceedings of the 36th ACM SIGMOD
International Conference on Management of Data
(SIGMOD’10).

[10] Parallel Data Processing with MapReduce: A Survey:
www.cs.arizona.edu/~bkmoon/papers/sigmodrec11.pdf

[11] Jyoti Nandimath, Ankur Patil, Ekata Banerjee,Pratima Kakade
and Saumitra Vaidya, " Big Data Analysis Using Apache
Hadoop," IEEE IRI 2013, August 14-16, 2013, San Francisco,
California, USA

Bundling Hadoop & Map Reduce for Data-Intensive Computing in Distributed Systems 97

Journal of Basic and Applied Engineering Research (JBAER)
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 9; October, 2014

[12] MapReduce: Simplified Data Processing on Large Clusters.
Available at http://labs.google.com/papers/mapreduceosdi04.pdf

[13] Stephen Kaisler, Frank Armour, J. Alberto Espinosa, William
Money, “Big Data: Issues and Challenges Moving Forward”,
IEEE, 46th Hawaii International Conference on System
Sciences, 2013.

[14] Sam Madden, “From Databases to Big Data”, IEEE, Internet
Computing, May-June 2012.

[15] Yuri Demchenko, Zhiming Zhao, Paola Grosso, Adianto
Wibisono, Cees de Laat, “Addressing Big Data Challenges for
Scientific Data Infrastructure”, IEEE, 4th International
Conference on Cloud Computing Technology and Science,
2012.

[16] HDFS Architecture Guide [Online] Available:
http://hadoop.apache.org/docs/hdfs/current/hdfs_design

[17] Levy E. and Silberschatz A., "Distributed FileSystems:Concepts
and Examples"

[18] Apache Hadoop - Petabytes and Terawatts
[Online].Available:http://www.youtube.com/watch?v=SS27FhY
WfU& feature=related

[19] Jeffrey Dean and Sanjay Ghemawat. "Mapreduce: simplified
data processing on large clusters", Commun. ACM, 51(1):107–
113, 2008.

[20] Sanchita Kadambari, Praveen Kumar and Seema Rawat " A
comprehensive study on Big Data and its future opportunities,"
in Proc. 2014 Fourth International Conference on Advanced

Computing & Communication Technologies, pp. 277-281

[21] Jeffrey Dean and Sanjay Ghemawat, " MapReduce: a flexible

data processing tool," Communications of the ACM, Volume 53
Issue 1, January 2010, Pages 72-77

[22] “Big Data: The next frontier for innovation, competition, and
productivity”, McKinsey Global Institute, May 2011, p. 11:
http://www.mckinsey.com/Insights/MGI/Research/Technology_
and_Innovation/Big_data_The_next_frontier_for_innovation.

[23] Securing Big Data : Architectural Issues Available at
https://securosis.com/blog/securing-big-data-architectural-issues

[24] Hadoop’s Programming Model Available:
http://adcalves.wordpress.com/2010/12/12/a-hadoop-primer/

[25] The Hadooper in me Available: http://hadooper.blogspot.in/

[26] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi,A. Rasin, and
A. Silberschatz. HadoopDB: an architecturalhybrid of
MapReduce and DBMS technologiesfor analytical workloads.
Proceedings of the VLDB En-dowment (PVLDB),
2(1):922{933, 2009.

[27] D. Agrawal, S. Das, and A. E. Abbadi. Big Data and cloud
computing: current state and future opportunities.In Proceedings
of International Conference on Extending Database Technology
(EDBT), pages 530-533,2011.

[28] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan,N.
Spiegelberg, H. Kuang, K. Ranganathan,D. Molkov, A. Menon,
S. Rash, R. Schmidt, and A. S.Aiyer. Apache Hadoop goes
realtime at Facebook. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD),
pages 1071-1080, 2011.

[29] K. Shim. MapReduce algorithms for Big Data
analysis.Proceedings of the VLDB Endowment
(PVLDB),5(12):2016-2017, 2012.

