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ABSTRACT 

Lorentz transformations describe the relationship between space and time measurements, 

measured in two different inertial frames of reference in Special Theory of Relativity. These 

transformations are linear and preserve Lorentz inner product on the 4-dimensional Minkowski 

space, a mathematical setting which represents the spacetime of Special Theory of Relativity. In 

the present paper, defining adjoint of a linear operator on Minkowski space, characterizations 

for Lorentz transformations have been obtained. This provides a new approach for the study of 

Lorentz transformations. A method to compute the matrix associated with the adjoint directly 

from the matrix of a given linear operator has been developed. Further, studying properties of 

adjoint of a linear operator on Minkowski space, it has been obtained that its determinant is 

same as the determinant of the given linear operator. It has been observed that Lorentz 

transformations are analogues of unitary transformations in the context of finite dimensional 

Minkowski space.  
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1. INTRODUCTION 

Lorentz transformations, first described by Dutch Physicist Hendrik A. Lorentz in 1890, are 
pedagogically important transformations which relate the velocity components of an object 
observed in two inertial frames of reference in Special Theory of Relativity and have large number 
of derivations. The successful theory of these transformations has several applications in 
Thermodynamics, Plasma Physics etc. In 1988, T. Chang, D. G. Torr and D. R. Gagnon[1] 
modified Lorentz theory as a test theory of Special Relativity and further, T. Chang and D. G. Torr 
[2] studied dual properties of spacetime under an alternative Lorentz transformation. G. L. Light 
[4], in 2010, has clarified the Doppler violet/ red shifts within the domain of Special theory of 
relativity by the eigenvalues of Lorentz transformations. Further, in 2010, these transformations 
have been applied to Aether space [6].  

Minkowski space named after the German mathematician Hermann Minkowski, is geometry of 
spacetime very different from the Euclidean geometry. Minkowski's conception of spacetime has 
made a great impact on the interpretation of quantum theory, cosmology etc. Relativistic quantum 
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theories are equipped with a background of Minkowski spacetime. Cauchy's problems for harmonic 
maps, 2-dimensional quantum gravity, finite temperature quantum field theory etc. are defined on 
Minkowski space. Lorentz transformation describes rotation on Minkowski space. Einstein theory 
of special relativity is formulated in 4-dimensional Minkowski space. The present paper is focused 
on the study of Lorentz transformations in terms of adjoint. Sectionwise description of the paper is 
given below: 

The paper begins with the necessary preliminaries in Section 2. In Section 3, defining adjoint of a 
linear operator on Minkowski space, its properties have been studied and characterizations for 
Lorentz transformations have been obtained. Finally, Section 4 concludes the paper.  

2. LORENTZ TRANSFORMATION 

The n-dimensional real vector space Rn with bilinear form	〈, 〉	: Rn × Rn→ R, satisfying the 

following properties: (i) symmetric, i.e. 〈., 8〉	= 〈8, .〉 for all x, y ∈ Rn (ii) nondegenerate, i.e. if 

〈., 8〉	= 0 for all x ∈ Rn, then y = 0 and (iii) is of index 1, i.e. there exists a basis e0, e1, ..., en−1 for 

Rn with  

〈)6, )4〉 = ηij =   

is called the n-dimensional Minkowski space, denoted by M. The bilinear form 〈, 〉 is called the 

Lorentz inner product, the matrix ηij 
is known as the Minkowski metric and an element x	∈ M is 

called vector. For . = ∑ .6)6
Z[�65" , the coordinate x0 is called the time component and the 

coordinates x1, x2, …, xn-1 are called the spatial components of x relative to the basis e
0
, e

1
, ..., e

n−1
. 

Then, the Lorentz inner product 〈., 8〉	of two events x and y is equal to	."8" −∑ .686
Z[�65� , where 

. = ∑ .6)6
Z[�65"  and 8 = ∑ 86)6

Z[�65" . A vector ¿ ∈ V is said to be lightlike, timelike or spacelike 

vector according as 〈¿, ¿〉 = 0, >0 or <0. For nonzero lightlike vectors	¿, b ∈ V	〈¿, b〉 = 0	iff ¿ = Qb, where Q ∈ �. If ¿ ∈ V is a nonzero timelike vector such that 〈¿,b〉 = 0, then w is 
spacelike. Unlike usual inner product, Lorentz inner product is not positive definite. Also, usual 
inner product induces a norm on M and hence topology, while Lorentz inner product does not. 

Further, for ¿,b ∈ V,	if 〈I, ¿〉 = 〈I,b〉 for all I ∈ V, then ¿ = b[5].  
A linear operator U on a 4-dimensional Minkowski space M is said to be a Lorentz transformation 

if 〈�¿,�¿〉 = 〈¿, ¿〉, for all ¿ ∈ V. It is well known that U	is a Lorentz transformation iff 
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〈�¿,�b〉 = 〈¿,b〉, for all ¿,b ∈ V which implies that v ∈ M is lightlike, timelike or spacelike iff 

Uv is lightlike, timelike or spacelike. Further, a Lorentz transformation is bijective, maps 
orthonormal basis to orthonormal basis and the determinant of the associated matrix is ±1. Also, 
the eigenvalues for which the corresponding eigenvectors are non-lightlike, are ±1 and the product 
of those eigenvalues is 1 for which the corresponding eigenvectors are linearly independent and 
lightlike [5, 8]. 

3. ADJOINT  

Adjoint of an operator on Hilbert space is well studied [7]. In this section, the notion of adjoint of a 
linear operator on M has been introduced and its properties have been studied. Further, 

characterizations for a Lorentz transformation have been obtained. Throughout this section, for ® ∈ 

M, 9ø denotes a linear functional on M defined by 9ø(x) = 〈., c〉 for all . ∈ M. 

Definition 3.1: Let T be a linear operator on M. A linear operator �∗on M is called adjoint of T if 〈�., 8〉 = 〈.,�∗8〉	for all ., 8 ∈ M.  

Proposition 3.2: Let f be a linear functional on M. Then there exists a unique vector b ∈ M such 

that f =9�. 

Proof: Let P)", 	)�, … , )Z[�R be an orthonormal basis for M. Set � = I")" − ∑ I6Z[�� )6, where I6 = 9()6),	for each / = 0, 1, … . , J − 1. Then � ∈ V and by the properties of Lorentz inner 

product, it follows that for . ∈ V, 〈., �〉 = 9(.). Further, to prove that b is unique, let c ∈ M be 

such that	〈., �〉 = 〈., ®〉	for all x ∈ M. Then � = ®. This completes the proof. 

It is known that adjoint of a linear operator on a finite dimensional real inner product space V exists 
and is unique [3]. It has been found in the following proposition that a similar result holds for a 
linear operator on M.  

Proposition 3.3: Let T be a linear operator on M. Then adjoint �∗of T exists and is unique. 

Proof: To prove the existence of �∗, let 8 ∈ M. Then 9U is a linear functional on M. By Proposition 

3.2, there exists � ∈ V such that 9U°� = 9�	 which implies that for . ∈ M, 〈�., 8〉 = 〈., �〉. Define 

�∗:V → V such that �∗8 = �. Then 〈�., 8〉 = 〈.,�∗8〉.  
To prove that �∗	is linear, let 8, � ∈ V and c and d be scalars. Then for . ∈ M, by the properties of 

Lorentz inner product, 〈�., ®8 + H�〉	=〈.,�∗(®8 + H�)〉. 〈�., ®8 + H�〉 = 〈�., ®8〉+ 〈�., H�〉 =®〈�., 8〉+ H〈�., �〉 = 〈., ®�∗8〉+ 〈., H�∗�〉 = 〈., ®�∗8 + H�∗�〉.	Hence, �∗(®8 + H�) = ®�∗8 +
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H�∗�. To prove uniqueness, let	�∗	and	�§	be operators on M such that 〈�., 8〉 = 〈.,�∗8〉 
and	〈�., 8〉 = 〈.,�§8〉 for all ., 8 ∈ M. Then 〈.,�∗8〉 =	 〈.,�§8〉 for all ., 8 ∈ M, finally proves 

that �∗ = �§. 
3.4 Matrix of &∗: Let T be a linear operator on M such that �. = 8, for . = (.", .�, … , .Z[�), 8 = (8", 8�, … , 8Z[�) and 86 = ∑ ®6,4.4Z[�45" . Then for a linear functional f on M, by Proposition 3.2, 

there exists a unique vector � = (�", ��, … , �Z[�)∈M such that 9�(�.) = 〈�(.), �〉. By definition 

of Lorentz inner product, 9�(�.) = 	8"�" −	8��� −	…− 8Z[��Z[�. Since each 86 = ∑ ®6,4.4Z[�45" , 

therefore 9�(�.) = 	�"∑ ®",4.4 −Z[�45" ∑ �oZ[�o5� (∑ ®o,4.4)Z[�45" =."(®","�" − ∑ ®o,"�o) −Z[�o5� ∑ .oZ[�o5� (−®",o�" + ∑ ®4,o�4)Z[�45� = 〈.,�∗�〉.  

Thus, the matrix of �∗with respect to the standard basis is í∗ =

 

Hence the matrix	í∗ is obtained from the matrix of T, denoted by A, by multiplying the last (n-1) 
entries of first row and first column of A by -1 and then taking its transpose. 

Example 3.5: Let T be a linear operator on a 3-dimensional Minkowski space defined 

as	�(., 8, �) = 	 (.	 + 8	 + 	�, .	– 	8	 + �, .	 + 	8	 − �). Then í = (1 1 11 −1 11 1 −1) and í∗ =
( 1 −1 −1−1 −1 1−1 1 −1). 
Remark 3.6: Like finite dimensional real inner product spaces, the adjoint of a matrix A on M is 
not equal to its transpose.  

It is well known that if A and í∗ be the matrices associated with linear operators T and �∗ on a 

finite dimensional real inner product space, then detí∗ = detA [3]. It has been obtained in the 
following proposition that a similar result holds for a linear operator on M.  
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Proposition 3.7: Let A be the matrix associated with a linear operator T on M and í∗ be the matrix 

associated with �∗. Then detí∗ = detA.  

Proof: Let A be an n×n matrix, n∈N. Then detA = where 

σ is a permutation of degree n and is the entry of the matrix A, 1 ≤ j ≤ n [4]. As 

obtained in Article 3.4 above, if either j = 1 or σj = 1, but j ≠ σj; otherwise 

Thus detí∗ =

 

Proposition 3.8: Let M be a Minkowski space. Let T and U be linear operators on M and c be a 
scalar. Then 
(� + ��∗ = �∗+	�∗  �®��∗ = ®�∗  ����∗ = �∗�∗  ��∗�∗ = �  

Proof: (i) For ., 8 ∈ M, 〈., �� + ��∗8〉 = 〈�� + ��., 8〉, by the definition of adjoint. Further, by 

the properties of Lorentz inner product and definition of adjoint 〈�� + ��., 8〉 = 〈�.	 + �., 8〉 =	〈�., 8〉 + 〈�., 8〉 =	 〈., 	�∗8〉+ 〈., 	�∗8〉 =	〈., 	��∗ +	�∗�8〉. This implies that	〈., �� + ��∗8〉 =	〈., 	��∗ +	�∗�8〉	for all ., 8 ∈ M. Hence �� + ��∗ = �∗+	�∗.  
(ii)	Similar to (i) above. 

(iii) By the definition of adjoint, 〈., ����∗8〉 = 〈����., 8〉 	= 〈�., 	�∗8〉 = 〈., 		�∗�∗8〉 for ., 8 ∈ 

M. This implies that 〈., ����∗8〉 =	 〈., 		�∗�∗8〉 for all ., 8 ∈ M. Hence, ����∗ = �∗�∗. 
(iv) For ., 8 ∈ M, 〈., ��∗�∗8〉 = 〈�∗., 8〉 =	 〈.,�8〉, by the definition of adjoint. Hence ��∗�∗ = �.  
Proposition 3.9: Let U be a linear operator on M. Then the following are equivalent: 

(i) U is Lorentz transformation. 

(ii) 	�∗� = � 
(iii)	��∗ = � 

,),()...2,2()1,1()sgn (∑
σ

σσσσ nnAAA

),( jjA σ th),( jj σ

),(),(*
jjAjjA σσ −=

).,(),(*
jjAjjA σσ = =∑

σ

σσσσ ),()...2,2()1,1()sgn ( ***
nnAAA

=∑
σ

σσσσ ),()...2,2()1,1()sgn ( nnAAA .det),()...2,2()1,1()sgn ( 111 AnnAAA =∑ −−−

σ

σσσσ



Sanchit Bhutani, Pranav Rajput 

“Innovative Trends in Applied Physical, Chemical, Mathematical Sciences and Emerging Energy 
Technology for Sustainable Development” ISBN: 978-93-83083-71-8  240 

Proof: To prove (i) implies (ii). It is known that if U is a Lorentz transformation, then 〈�.,�8〉 =〈., 8〉 for all ., 8 ∈ V. By nondegeneracy of Lorentz inner product, 〈., �∗�8〉 = 〈., 8〉 implies �∗� = �. To prove (ii) implies (iii), let �∗� = �. Then	í∗í = �, where A is the matrix associated 

with U. By the property of determinant and by Proposition 3.7, det í ≠ 0. Therefore A is invertible 

and í[� = í∗. This implies that íí∗ = �. Hence ��∗ = �. To prove (iii) implies (i), let ��∗ = �. 
Then �∗� = � by the same argument as in the proof of (ii) implies (iii). Now, 〈�.,�.〉 =〈., �∗�.〉 = 〈., �.〉 = 〈., .〉. This completes the proof. 

Remark 3.10: Proposition 3.9 shows that Lorentz transformations on Minkowski space are 
analogues of unitary operators on finite dimensional real inner product space.  

 Proposition 3.11: Let U be a Lorentz transformation on M. Then �∗is a Lorentz transformation.  

Proof: By the definition of adjoint, 〈�∗., �∗.〉 = 〈., ��∗.〉 for all . ∈ V. By Proposition 

3.9,	〈., ��∗.〉 = 〈., .〉. Hence �∗ is a Lorentz transformation. 

4. CONCLUSION 

In this paper, generalizing the well known notion of the adjoint of a linear operator from finite 
dimensional real inner product space to the n-dimensional Minkowski space, necessary and suffient 
conditions have been obtained for Lorentz transformations. It has been concluded that Lorentz 
transformations are analogue of unitary operators on finite dimensional real inner product space. 
Thus, the change in inner product has provided a simple and revealing structure theory for 
operators on Minkowski space resulting in an interesting exploration of an important area of 
Mathematics. 
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