Effect of Gd-substitution at Y-site on the Structural and dielectric properties of Y_{1-x}Gd_xMnO₃(x=0, 0.05) thin film

Amit Singh Rajput^{1,2}, Samta Chauhan¹, Saurabh Kumar Srivastava¹, M. Sankar³, Ramesh Chandra^{1*}

¹Nanoscience Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee-247667, India ²Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee-247667, India ³Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India * Corresponding author ramesfic@iitr.ernet.in

ABSTRACT

Perovskite like RMnO3 (R: rare-earth) exhibits magneto electric effects because of the intimate Correlation between magnetic and ferroelectric orders. In this paper, the effect of doping Gd at Y site in hexagonal-YMnO₃ have been studied. We report the synthesis of hexagonal Y_{1-x}Gd_xMnO₃ (x=0, 0.05) thin film over Pt/Al₂O₃ via Pulsed Laser Deposition technique in a pure oxygen atmosphere. The effect of doping on crystalline structure, surface morphology and dielectric properties of Y_{1-x}Gd_xMnO₃ (x=0, 0.05) thin film have been investigated. The crystalline structure was studied by X-ray diffraction and topography of film surface was analyzed by atomic force microscopy. The thickness of the as-deposited thin films is measured by Surface Profilometer and found to be ~200 nm. Frequency dependent dielectric measurements reveal the improved dielectric properties of Gd-doped h-YMnO₃.

[&]quot;Innovative Trends in Applied Physical, Chemical, Mathematical Sciences and Emerging Energy Technology for Sustainable Development" ISBN: 978-93-83083-71-8