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Abstract: The problem of applied magnetic field on free 

convective flow in a vertical channel with heat transfer is taken 

for discussion to understand the magnetic upshots. A uniform 

magnetic field is applied normal to the plate. The equation 

governing the fluid flow and heat transfer have been solved 

subject to the relevant basic equations and boundary conditions. 

It is noticed that the magnetic field M has considerable effect on 

u, θθθθ, τw, τ1, Nu
1
 . All the profiles increases with M. The 

behaviour of the fluid velocity U for α > 0 is reversed to the 

normal velocity V for α = 0, however both are diminishing 

sharply. 

1. INTRODUCTION 

In recent years the problem of the free convective flow of a 
viscous fluid over a uniformly moving long vertical wavy 
wall and a parallel flat wall has got a threadbare response 
from research scholars with a view to understanding its 
application in transportation cooling of re-entry vehicles and 
rocket boosters, cross- hatching on ablative surfaces and film 
vaporization in combustion chambers. Lekoudias, Nayfeh and 
Saric are pioneering contributor in this field because they 
have discussed linear analysis of compressible boundary layer 
flows over a wavy wall. The Rayleigh problem for a wavy 
wall and amplitude wall waviness upon the stability of the 
laminar boundary layer have been discussed by lessen and 
Gangwani (1976). The free convection heat transfer in viscous 
incompressible fluid between a long vertical wavy wall and a 
parallel flat wall was presented by Vajravelu and Sastri 
(1978). Free convection heat transfer in a viscous 
incompressible fluid between a uniformly moving long 
vertical wavy wall and a parallel flat wall have been discussed 
by S. Ahmed et al. (2002). The aim of the present exploration 
is to find out the effects on the uniform magnetic field applied 
normal to the direction of main flow with a view to make an 
extension of the study done so far by S. Ahmed et al. (2002) 
in this field. 

2. BASIC EQUATIONS 

We consider the two dimensional steady laminar free 
convective MHD flow along the vertical channel as shown in 
Fig. 1. 

 

Fig. 1. Flow Configuration 

In the channel, �	-axis is taken along the flat wall and the �� -
axis is taken perpendicular to it. Moreover,  � w and  �

1
 are 

the constant temperatures at the respective wavy wall 
 �� =�c̅os�	�̅ and the flat wall  �� = d. 

In view of this, we consider that: 

1)  Except density in the resilience force, fluid properties 
are constant. 

2)  In energy equation, the viscous and magnetic dissipative 
are meant to be ignored. 

3)  In context volumetric heat either source or sink does not 
change its energy equation. 

4)  The flow is laminar, balanced and two dimensional. 

5)  The magnetic Reynolds number is small so that the 
stimulated magnetic field can be abandoned. 

6)  The wave length of the wavy wall, which is proportional 

to K-1, is large.  
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Under these conditions, the equations governing the fluid 
motion in non-dimensional form are: 

uux + vuy = -px + uxx + uyy - 1��
���

 - ��  (4.2.1) 

uvx + vvy = -Py + Vxx + Vyy,   (4.2.2) 

ux + vy = 0,     (4.2.3) 

p(uθx + vθy) = θxx + θyy + α   (4.2.4) 

Subject to the boundary conditions: 
u = A, v = 0, θ = 1, at y = εcosλx 

u = v = 0, θ = m   at y = 1    
(4.2.5) 

The non-dimensional quantities introduced in the above 
equations are: 
x = / d,  y = / d, u = d / υ, v = d / υ, 

p = �̅/ρ(υ / d)2, θ = (	 - 	 s) / (	 w - 	 s) 

m = (	 l – 	 s ) /( 	w – 	 s ), the wall temperature ratio, 

α = Qd2 / k (	w – 	 s ), the heat source / sink parameter, 

P = µCp / k, the Prandtl number, 

ε =� ̅/d, the amplitude parameter  

γγγγ = �	 /d, the frequency parameter, 
G = d3gβ (	w -	 s) / υ

2, the grashof number or free convection 
parameter, 

M = σB2
0d

2/pυ, the Hartmann number 

Where ,  are velocity components,  fluid pressure, ρg the 
buoyancy force, Q the constant 

Heat addition or absorption, B0 the magnetic induction and the 
other symbols have their usual meanings.  

Under the perturbations technique, let us assume that the flow 
field and temperature field are to be: 

u (x, y) = u0 (y) + u1 (x, y), 

v (x, y) = v1 (x, y)     
(4,2,6)

 

p (x, y) = p0 (x) + p1 (x, y), 

θ (x, y) = θ0 (y) + θ1 (x, y), 

Where the perturbations u1, v1, p1 and θ1 are small compared 
with the mean or the zeroth-order quantities. 

On using (4.2.5), the equations (4.2.1) to (4.2.4), transformed 
to the non-dimensional form: 

For zeroth order : 

  ��
// - Mu0 + G θ0 = C,  = - α    (4.2.7) 

And for the first order: 
uo u1, x + v1 u

/
0 = -P1,x + u1, xx + u1, yy + Gθ1 - Mu1 

 (4.2.8) 

uo v1, x = -P1, y + v1, xx + v1, yy    (4.2.9) 

u1, x + v1,y = 0        (4.2.10) 

P (uoθ1,x + v1θ /
0) = θ1,xx + θ1,yy        (4.2.11) 

Where c =  (p0 – ps) is the constant pressure gradient term and 
is taken equal to zero following Ostrach (1952) and subscript 
‘s’ stands for static fluid condition. 

With the help of (4.2.6), the boundary conditions (4.2.5) can 
be split up into the following two parts: 

y = 0 : uo = A, θ0= 1 

y = 1 : uo=0 θ0 = m    (4.2.12) 

and 
u1 = - Re {ε u/

0e
iλx}, v1 = 0, θ1 = - Re {εθ /

0e
iλx} at y = 0

  

u1 = 0, v1 = 0, θ1 = 0 at y = 1     (4.2.13) 

Where the prime denotes differentiation w.r.t y. 

3. METHOD OF SOLUTION FOR BOTH THE 

ORDERS 

With the help of (4.2.12), the zeroth order solutions from the 
equations (4.2.7) have been obtained but are not presented 
here due to sake of brevity. 

To find the first order solutions from the equations (4.2.8) to 
(4.2.11), let us introduce the stream function Ψ1, defined by 

u1 = -Ψ� 1,y v1 = Ψ�  1,x    (4.3.1) 

Where,  Ψ� 1(x,y) = εeiλxΨ(y), θ1(x,y) = εeiλxt(y) 

For small value of 1 (or K << 1), we consider: 
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Ψ(λ,y) =  λiΨi, t(λ,y) =  λi ti   

On using (3.1) and (3.2) into (2.8) – (2.11), to the order 
following sets of ordinary differential equations and 
corresponding boundary conditions : 

ΨIV
0 - M Ψ0

// = Gt0
/ , t0

// = 0    

ΨIV
1 - M Ψ1

// = i(u0Ψ0
// - Ψ0 u0

// ) + Gt1
/  

t1
// = iP (u0t0 + Ψ0 θ0

/ ) 

ΨIV
2 - M Ψ2

// = 2Ψ0
// + i(u0 Ψ1

// - Ψ1 u0
// ) + Gt2

//  
  

(4.3.5) 
t2

// = iP (u0t1 + Ψ1 θ0
/ ) + t0 

and Ψ0
/ = u0

/ , Ψ = 0,  to = -θ /
0 at y = 0 

           
Ψ0/ = 0, Ψο = 0,  to = 0 at y = 1 

Ψi
/ =Ψi = ti = 0  at y = 0  

for i ≥ 1  (4.3.7)

Ψi
/ =Ψi = ti = 0 at y = 1 

With the help of (4.3.6) to (4.3.7), the solutions of the 
equations (4.3.3) to (4.3.4) have been obtained but not 
presented here due to sake of brevity. From these solutions, 
due to waviness of the wall, the expressions for u
are the first order solutions or the disturbed parts and they can 
be put into the form : 

u1 = ε[Ψi
/ sin λx - Ψr

/cosλx], 

v1 = - ελ[Ψr sin λx - Ψicosλx],   

θ1 =ε[trcosλx - ti sin λx], 

where Ψ = Ψ
1 
+ iΨi   t = tr + iti 

4. SKIN FRICTION AND HEAT TRANSFER 

COEFFICIENT AT THE WALLS 

The non-dimensional skin friction at the wavy wall y = 
εcosλx and at the flat wall y = 1 are respectively:

τu = τ 0
0 +εcosλx [u0

// (0) + /
1 (0)],   

τ1 = τ0
1 +ε   /

1(1) cosλx,     

Where τ 0
0 = u/

0 (0) and τ0
1 = u/

0 (1) are the zeroth order skin 
frictions at the walls and 

u1(x, y) = εeiλx�	1(y) and v1 (x,y) = εeiλx(̅1(y)  
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 (4.3.2) 

(2.11), to the order λ2, the 
following sets of ordinary differential equations and 

 (4.3.3) 

 

4.3.4)
 

 

 
(4.3.6) 

(4.3.7)
 

With the help of (4.3.6) to (4.3.7), the solutions of the 
equations (4.3.3) to (4.3.4) have been obtained but not 
presented here due to sake of brevity. From these solutions, 

ns for u1, v1 and θ1 
are the first order solutions or the disturbed parts and they can 

 (4.3.8) 

ANSFER 

dimensional skin friction at the wavy wall y = 
x and at the flat wall y = 1 are respectively: 

 (4.4.1) 

 (4.4.2) 

(1) are the zeroth order skin 

The non-dimensional Nusselt Nu at the wavy wall y= 
and at the flat wall y = 1 respectively:

Nuw = Nu0
0 + εcosλx [θ0

//(0) + t/(0)],
 (4.4.3) 

Nu1 = Nu0
1 + εcosλx [t/(1)], 

where Nu0
0 = θ0

/(0) and Nu0
1 = 

skin frictions at the walls. 

5. OUTCOME ANDDISCUSSIO

All Mathematical computation are done in order to 
λ = 0.5. The action of the velocity profiles u, v and the 
temperature profile θ are illustrated in figs. 2 
have been schemed against y as abscissa. 

When α = 5, the fluid velocity u increase as M (I, II, III) and 
A (I, IV, V), while it drop off with the augment of P (I, VI, 
VII). When α = 0, the normal velocity v reduces with the 
boost of M and A, whereas v raises as K
increases as M and P, but θ decreases with the increase of A.

Figures 5 to 8 show the behaviour of the skin f
Nusselt numbers at the channel walls and they have been 
designed against α as abscissa. When G=0, the skin friction 

raises as raises as M and A, whereas 
increase of P. When G=0, the heat transfer coefficient Nu
decreases with the increase of M, while Nu
and P. Atlength, when G = 10, the Nu
Nu1 drops with the enhancement of A.

6. INFERENCE 

The above mentioned outlines have made the following 
inferences -  

(i) The magnatic field M has considerably important effect 
on u,θ, τw, τ1 and Nu1. The outlines have augment 
inference. 

(ii) The upshots of the parameters K, M, G on Nu
air has been reversed to Nu1 for the water.

(iii) The movement of the fluid velocity u for 
being directed to the normal velocity v for 
however both are diminishing keenly.

(iv) The result of v, θ, τw, Nuw and Nu

off with the P; but this result is reversed for u and 
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dimensional Nusselt Nu at the wavy wall y= εcosλx 
and at the flat wall y = 1 respectively: 

(0)],  

  (4.4.4) 

= θ0
/(1) are the zeroth order 

OUTCOME ANDDISCUSSION 

All Mathematical computation are done in order to ε = 0.05, 
= 0.5. The action of the velocity profiles u, v and the 

are illustrated in figs. 2 – 4 and they 
have been schemed against y as abscissa.  

= 5, the fluid velocity u increase as M (I, II, III) and 
with the augment of P (I, VI, 

= 0, the normal velocity v reduces with the 
boost of M and A, whereas v raises as K. When α = -5, the q 

decreases with the increase of A. 

Figures 5 to 8 show the behaviour of the skin frictions and the 
Nusselt numbers at the channel walls and they have been 

as abscissa. When G=0, the skin friction τw 

raises as raises as M and A, whereas τ1 reduces with the 
increase of P. When G=0, the heat transfer coefficient Nuw 

eases with the increase of M, while Nuw increases as A 
and P. Atlength, when G = 10, the Nu1 heaves as M and P, but 

drops with the enhancement of A. 

The above mentioned outlines have made the following 

has considerably important effect 
. The outlines have augment 

The upshots of the parameters K, M, G on Nuw for the 
for the water. 

The movement of the fluid velocity u for α>0 is not 
eing directed to the normal velocity v for α = 0, 

however both are diminishing keenly. 

and Nu1 is not being droped 

off with the P; but this result is reversed for u and τ1. 
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(v) We see that u, τw, τ1 and Nuw raised with or without plate 

velocity A. While this result is reversed to v, θ and Nu1. 

 
   

 

 

 

 
Fig. 2:  Velocity profile u against y when m = 2, G =10, λλλλx = 0 

 

 

 

 

 

Fig. 3:  Velocity profile V against y when m = 2, G =10, λλλλx = 
)
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Fig. 4:  Velocity profile V against y when m = 2, G =10, λλλλx =
)
* 

 

 

 

 

 
Fig. 5:  Skin friction ττττ

w 
at y = 0 against α α α α     

when m = 2, G = 0, λλλλx = 0 

 

Fig. 6:  Skin friction ττττ
1 
at y = 1 against α α α α when m = 2, G = 10, 

λλλλx = 0 

 

Fig. 7:  Heat transfer coefficient Nu
1
 at y = 0 against α α α α     

when m = 2, G = 0, λλλλx = 0 

 

Fig. 8:  Heat transfer coefficient Nu1 at y = 1 against α α α α when m 

= 2, G = 10, λλλλx = 0  
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