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Abstract: In the case of heterogeneity in the data and heavily 

skewed distribution, we proposed Exponential-Mixture Receiver 

Operating Characteristic (ROC) model and discussed the 

properties of this ROC Curve. Area Under the Exponential-

mixture ROC Curve (AUC) and its variance are also found. 

Estimates of the parameters of Exponential-mixture ROC model 

are derived by using the maximum Likelihood method and 

method of moments. The proposed model is validated by using 

the simulation studies 
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1. INTRODUCTION 

Mixture distribution arises where a statistical population 
contains two or more sub-populations. A random variable (X) 
is said to follow a finite mixture distribution if it has a 
probability density function of the form  

 

(1.1)        

The parameters, are mixing weights, and is 

the  component density of the mixture.  

The finite mixture distribution is first introduced by 
Newcomb in (1886) for outliers. Pearson (1894) also used the 
mixture distribution for estimating the parameters of two 
component Normal-mixture distribution by the method of 
moments. The research work on mixture distribution is 
growing very fast due to the advent of computers. The first 
monograph on finite mixture distribution is introduced by 
Everitt and Hand (1981). Titterington et al. (1985) discussed 
the finite mixture model in his book. McLachlan and Peel 
(2000) also discussed the finite mixture model. They 
discussed the estimation method of finite mixture model. 

The mixture distribution have many applications in a large 
number of areas e.g. Econometrics, Sociology, Engineering, 
Reliability estimation, Remote sensing, Medical diagnosis and 
Discriminant analysis. 

Schlatmann (2009) discussed the application of mixture 
model in medical diagnosis. In this paper, we discussed the 
mixture distribution in medical diagnosis.  

Exponential distribution is the only continuous life 
distribution which has a constant failure rate. The Exponential 
distribution is also very famous for its memory-less property. 
Dass and Seong (2011) discussed the multivariate Normal-
mixture ROC model. Gonen (2013) also discussed the p-
component Normal-mixture ROC model.  

He also discussed the Area under the Curve of p-component 
normal-mixture ROC curve. In this paper we discuss the 
mixture of two exponential density functions. Exponential 
distribution is a highly skewed distribution. It is also used in 
those cases where certain events occur with a constant 
probability per unit length. Everitt and Hand (1981) discussed 
the exponential mixture distribution in their comprehensive 
monograph. Titterington et al. (1985) also discussed the 
exponential mixture distribution in their book. The probability 
density function of the Exponential mixture distribution is as 
follows 

            

(1.2)       

The cumulative distribution function of Exponential mixture 
distribution is as follows 

 

 

          (1.3) 

where p is the weight of the mixture distribution. The sum of 
the weights of distribution should be equal to 1. The 
Exponential mixture distribution is very useful in life testing 
problems.  

Receiver Operating Characteristic (ROC) curve is used for the 
classification of the objects by using the cut-off values. Here 
Receiver Operating Characteristic curve is defined only for 
the continuous random variables. The ROC Curve is first 
introduced by Radar engineer and Electrical engineer 1950’s 
during World War II in Signal detection theory. It is also used 
in the Psychophysics to classify human detection of weak 
signals. ROC curve have many applications in Medical as 
well as Non-Medical fields. ROC curve is also used in the 
diagnostic accuracy. It classifies the healthy and diseased 
populations.  
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The classification of the healthy and diseased population 
depends on the threshold or cut-off values. Suppose X is a 
random variable and t is the threshold value in a classification 
rule, so that an individual belongs to healthy population if 
classification scores (s) are greater than t otherwise an 
individual belong to disease population. Suppose that we take 
healthy population (H) and diseased population (D). There are 
four classification rates which gives the probability for 
understanding the discrimination of the patients. True Positive 
Rate (TPR) is defined as the probability that an individual 
from disease cases is correctly classified. True Negative Rate 
(TNR) is defined as the probability that an individual from 
healthy control is correctly classified. False Positive Rate 
(FPR) is defined as the probability that an individual from 
healthy control is misclassified and False Negative Rate 
(FNR) is defined as the probability that an individual from 
disease cases is misclassified. The mathematical definitions of 
TPR, FPR, TNR and FNR is as follows 

TPR=  
FPR =  
TNR =  

FNR =  

Sensitivity and Specificity are statistical terms which are used 
to evaluate a diagnostic test. These are used to measure the 
performance of a binary classification test. They are 
independent of the population of interest subject to the test. 
Sensitivity is also known as True Positive Rate and 
Specificity is also known as True Negative Rate. In medical 
terminology, Sensitivity is defined as the proportion of 
patients who are suffering from disease and also the test is 
positive. Specificity is defined as the proportion of patients 
who are healthy and also the test is negative. Mathematically, 
Sensitivity and Specificity are defined as follows, 

 

 

For getting 100% classification of a test, we need high 
sensitivity and low 1-Specificity or high True Positive Rate 
(TPR) and low False Positive Rate (FPR). For the 100% 
classification, the coordinates of FPR and TPR should be 0 
and 1.  

ROC Curve is simply a curve between the False Positive Rate 
(FPR) and True Positive Rate (TPR). The discrimination of 
the ROC curve varies with the threshold or cut-off values. 
FPR is also known as 1-Specificity and TPR is also known as 
Sensitivity. The ROC curve is only a single Curve which tells 

the information in the cumulative distribution functions of the 
scores of the two classes. There are three approaches for 
estimating the ROC curve - Parametric, Non-Parametric and 
semi-parametric method. In this paper, we discuss only 
parametric method for estimating the ROC curve. 
Mathematical definition of ROC curve is given as 

  (1.4) 

where, F(.) and G(.) denote the cumulative distribution 
function of healthy observations and the cumulative 
distribution function of diseased observations.  

Properties of ROC Curve 

1. The test values of X are smaller than Y. 

2. ROC curve is a monotonically increasing function.  

3. ROC curve does not change if the classification scores 

undergo a strictly increasing transformation.  

4. The slope of the ROC curve at a threshold value t is 

given as
   1.5 

 
5. For the symmetric properties we use the Kullback-

Leibler divergence that gives a critical values of the 
TPR and FPR. For checking the symmetric property, 
first we draw the negative chance diagonal about False 
positive Rate. The ROC curve is called as TPR 
asymmetric if the curve may adhere to the left edge of 
the ROC space longer than it does to the top. Similarly, 
the ROC curve is called as TNR asymmetric if the curve 
may adhere to the top edge of the ROC space longer 
than it does to the left edge of the ROC curve (Ref. 
Hughes and Bhattacharya (2013)). Suppose that X is a 
continuous random variable, we denote pdfs  for 

diseased cases and for healthy controls. Then the 

Kullback-Leibler divergence is defined as 

     (1.6) 

where  is the comparison distribution and is the 

reference distribution. Similarly,

           

   (1.7) 

is the comparison distribution and as the 

reference distribution and D is the common support range of 
and . Here, it should be noted that if  and 
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 are positive and 

, if and only if 

. These two measure gives the asymmetry of 

ROC Curve with respect to diagonal. If 
, then the ROC Curve is said to 

be True Positive Rate asymmetric and if 
, then the ROC Curve is said to be 

True Negative Rate asymmetric. 

In this paper, there are five sections. In first section, we 
discussed the review of literature of Mixture distributions, 
Exponential mixture distribution and ROC curve. In section 
second, we discussed Exponential mixture ROC model and 
the properties of the Exponential mixture ROC curve to know 
the behavior of the ROC curve. In third section, we discussed 
the Area Under the Curve of Exponential mixture ROC curve 
to measure its accuracy. The estimates of parameters of 
exponential mixture ROC model are derived from maximum 
likelihood method and method of moments. In section four, 
we derived variance of Area Under the Curve for testing the 
hypothesis. In the last section, we discussed the simulation 
studies by taking a numerical example for the validation of 
the model. 

2. EXPONENTIAL MIXTURE ROC MODEL 

Suppose that X follows exponential mixture distribution 
which is coming from healthy controls and Y also follows 
Exponential mixture distribution which is coming from 
diseased cases. The probability distribution function of 
healthy control and diseased cases are 

 (2.1)  

 (2.2)   

The cumulative distribution function of healthy control and 
diseased cases are given as  

  (2.3)

    (2.4) 

The ROC model of two component exponential mixture 
distribution is as follows 

  (2.5) 

and         

 p>0, ,  and i=1,2 , j=1,0. 

where p is the weight of the mixture distribution and t is the 
cut-off or threshold value. The first subscript in shows 

that density function is from first or second distribution and 
second subscript shows that it is coming from either healthy 
controls or diseased cases. Here, second subscript 0 means it 
is coming from healthy controls and 1 means it is coming 
from diseased cases. 

The Exponential mixture ROC curve should follow the 
following assumptions. 

1. The mean of the diseased distribution should be greater 
than the mean of the healthy distribution i.e.   

2. Attach more weight to the population with higher mean. 

The Exponential Mixture ROC curve satisfies the following 
properties: 

1. The ROC curve is monotonically increasing function. 

Proof: A function is said to be a monotone increasing 
function, if the first derivative of the function is positive. 
Differentiating (2.1) with respect to x(t), we get 

   2.6 

As, the first derivative is greater than zero, hence the ROC 

curve is monotonically increasing function. 

2. ROC curve is concave function. 

Proof: A function is said to be concave if its second derivative 
is negative. Differentiating (2.3) with respect to x(t), we get 

 

2.7 

Hence, ROC curve is concave in nature. 
3. The slope of the ROC curve at the threshold t is given by 
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   (2.8) 

The slope of the ROC curve also gives the Likelihood-Ratio 
which is useful in hypothesis testing. 

4. ROC curve is invariant with respect to monotone 
increasing transformation of the test scores. 

5. The ROC curve is TPR asymmetric. 

Proof: The K-L divergence between the distribution of 
diseased and healthy group with p(x) as the comparison 
distribution and q(x) as the reference distribution has been 
given as 

 (2.9)  
 
Similarly, the K-L divergence between the distribution of 
healthy and diseased group with q(x) as the comparison 
distribution and p(x) as the reference distribution has been 
given as 

  
(2.10) 

 

 

Fig. 2.1: TPR asymmetric Exponential Mixture ROC curve 

It was found that KL(q,p) > KL(p,q). These two divergence 
measures would be zero if the healthy and diseased groups are 
identical. Hence, we have proved that, the ROC curve is TPR 
asymmetric. Figure 2.1 shows the asymmetric property of 
Exponential mixture ROC curve. 

3. AREA UNDER THE EXPONENTIAL MIXTURE 

ROC CURVE 

The measure of accuracy of the discrimination between the 
healthy and diseased distribution is Area Under the ROC 
curve.The Area Under the ROC curve gives the best measure 
of accuracy of the classification. Mathematically the Area 
Under the ROC curve is given as 

        (3.1) 

The Area Under the ROC curve lies between 0 and 1. For a 
perfect diagnostic test, the Area under the ROC curve should 
be 1 and the curve should lie on the upper left border of the 
ROC space. For a worthless test, the Area Under the ROC 
curve will be equal or less than 0.50. Area under the 
exponential mixture ROC curve is given as  

   (3.2)  

The estimates of the parameters of ROC model can be found 

by using two methods which are discussed below. 

(a) Maximum likelihood method  

The probability distribution function of exponential mixture 
distribution which is coming from healthy control is as 
follows 

         where 

 
 

For estimating the parameter , the likelihood function is 

given as 

 

The log-likelihood of the above equation is  
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Differentiating above equation with respect to  and 

equating it to zero, we get 

           (3.3) 

Similarly, we get               

         (3.4) 

The probability distribution function of Exponential mixture 

distribution which is coming from diseased cases is written as  

 

 
On the similar lines as done above, the maximum likelihood 

estimate of and are given as

  

           (3.5) 

           (3.6)

 

Substituting all the estimates from (3.3)-(3.6) in the Area 
Under the Curve of Exponential mixture ROC curve (3.2), the 
Estimated AUC is given as 

  (3.7)  

(b) Method of moments 

Method of moment is another method for estimating the 
population parameters. It is a simple method for estimating 
the parameters. The method of moment is introduced by 
Pearson (1894) for estimating the parameters of two 
component normal-mixture distribution. Rider (1961) 
discussed the method of moment for estimating the parameter 
of exponential mixture distribution. In the method of 
moments, first we derive the equation which is based on 
population moments and these population moments are 
estimated by drawing the sample observation. These 
equations are solved by using the sample moments in place of 
population moment. The rth moment about origin of the 
exponential mixture distribution is given as  

 (3.8)        

where f1(x) and f2(x) are the density functions of the 

Exponential distribution which have been discussed earlier. 

Now (3.8) can be written as 

 

  

        (3.9) 

The corresponding sample moment is defined as

            

       (3.10) 

The first three sample moments are given as follows 

    (3.11) 

       (3.12) 

       (3.13)  

Using these equations, we can estimate the parameters and 

in terms of sample moments as 

   (3.14) 

   (3.15) 

4. VARIANCE OF AUC AND CONFIDENCE 

INTERVAL OF AUC 

For finding the variance of AUC of Exponential mixture ROC 
curve, we will use the delta method. It gives the approximate 
expression of variance of AUC and it is based on Taylor 
series expansion. 
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(4.2) 

where,  and 
 

First, we find the variance of and variance of  
as 

  

        (4.3)                  

  

       (4.4) 

For finding the variance of , variance of and also 

covariance between and , we will use fisher 

information matrix. The fisher information matrix is given as 

 

where 

 

Taking log on both sides, we get 

 (4.5) 

Differentiating (4.5), twice with respect to , we get 
 

Similarly  

 

The covariance terms are zero due to independent identically 
distributed random variables. Substituting these values in 
Fisher information matrix, we get 

 

The diagonal terms of the inverse of the Fisher information 
matrix gives  

 

and  

We know that . Now differentiating with 

respect to  and , we get 

 and  

Substituting all these values in (4.3), we get

  

and 

 

(4.6)        

Similarly, we get 

 (4.7)         

Putting the values of and 

in (4.2), we get 

 

(4.8) 

For testing the hypothesis, 

 vs  

the test statistic of AUC is given as 
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The 100(1-α)% confidence interval of AUC is given as  

  (4.10)   
where α is the level of 

significance and  is the critical value of the confidence 

interval.~ 

5. SIMULATION STUDIES 

In this paper, we use Monte Carlo Simulation technique for 
validation of our results by taking an example. Monte Carlo 
Simulation method is very useful when the population is 
heterogeneous. It is based on the repeated random sampling. 
The following steps define the Monte Carlo Simulation 
algorithm 

• First define a possible range of unit. 

• Second generate random numbers for a given possible 
distribution over the range. 

• Third to execute a deterministic computation from the 
unit. 

• Fourth get the result. 

We estimate the population parameters of exponential mixture 
distribution of six different sample sizes 10, 20, 30, 100, 200, 
300. We take the population parameter of exponential mixture 
distribution viz. , , and . 

The sample size of each density function is same 
. The Area Under the 

Exponential mixture ROC curve is 78.33% using the 
population parameters. 

The estimated value of the parameters of exponential mixture 
ROC model using maximum likelihood method and method 
of moments are given in Tables 5.1 and 5.2. The estimated 
AUC, its variance for the exponential mixture ROC curve 
using maximum likelihood method and method of moments 
are given in the Tables 5.2 and 5.4. The bias of parameters is 
given in parenthesis. 

 
Table 5.1. The estimated value of parameters of Exponential mixture ROC curve using Maximum Likelihood method 

n 
 

    

10 0.905 
(-0.094) 

0.905 
(-1.094) 

4.058 
(-0.941) 

4.058 
(0.058) 

20 0.813 
(-0.186) 

1.795 
(-0.205) 

4.258 
(-0.741) 

0.173 
(4.173) 

30 1.472 
(0.472) 

1.472 
(-0.528) 

4.125 
(-0.874) 

4.125 
(0.125) 

100 0.552 
(-0.448) 

3.60 
(1.60) 

4.464 
(-0.536) 

1.683 
(-2.317) 

200 1.400 
(0.400) 

1.400 
(-0.6) 

5.112 
(0.112) 

5.111 
(1.111) 

300 0.777 
(0.223) 

1.477 
(-0.522) 

6.045 
(1.045) 

3.656 
(-0.344) 

 
Table 5.2. Estimated variance, standard error and confidence interval of AUC of Exponential  

mixture ROC curve using Maximum Likelihood method 

n      

10 0.8175 0.0044 0.0667 0.686 0.9482 

20 0.8337 0.0007 0.0271 0.7805 0.8868 

30 0.7370 0.0025 0.0500 0.639 0.835 

100 0.7185 0.0003 0.0197 0.6798 0.7571 

200 0.7850 0.0002 0.0168 0.7520 0.8179 

300 0.8339 0.0002 0.0152 0.8041 0.8636 
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Table 5.3. The estimated value of parameters of Exponential mixture ROC curve using Method of moments 

 n 
 

    

10 0.905 
(-0.094) 

0.905 
(-1.094) 

2.847 
(-2.153) 

3.684 
0.316 

20 1.194 
(0.194) 

 1.153 
 (-0.847) 

4.782 
(-0.218) 

14.641 
(10.641) 

30 1.469 
(0.469) 

1.472 
(-0.528) 

3.496 
(-1.504) 

3.355 
(-0.645) 

100 1.231 
(0.231) 

5.984 
(3.984) 

3.984 
(-1.016) 

6.125 
(2.125) 

200 1.399 
(0.399) 

1.400 
(-0.600) 

5.112 
(0.112) 

5.115 
(1.115) 

300 1.283 
(0.283) 

4.163  
(2.163) 

2.905 
(-2.095) 

5.136 
(1.136) 

 
Table 5.4. Estimated variance, standard error and confidence interval of AUC of Exponential  

mixture ROC curve using Maximum Likelihood method 

n      

10 0.771 0.0036 0.6002 0.654 0.889 

20 0.838 0.0001 0.0131 0.812 0.864 

30 0.701 0.0031 0.0562 0.591 0.811 

100 0.682 0.0003 0.0193 0.647 0.725 

200 0.785 0.0002 0.0168 0.752 0.818 

300 0.651 0.0001 0.0114 0.628 0.673 

 

 

Figure 5.1. Exponential mixture ROC Curves 

From Tables 5.1 to 5.4, it is observed that estimate become 
closer to the parameters with increase in sample size and bias 
get reduced. It is clear that estimates given by maximum 
likelihood method are more closer to the true parameter as 
compared to the estimates by method of moments. It is also 
observed that the Area under the ROC curve (AUC) is more 
closer to the true value of AUC using maximum likelihood 
method as compared to the method of moments.  

Figure 5.1 shows Exponential mixture ROC curve for 
different sample sizes and as the sample size increases the 
exponential mixture ROC curve is much closer to the perfect 
ROC curve. 

6. CONCLUSION 

The Exponential mixture distribution is a very useful 
distribution in life testing specially in the case of presence of 
heterogeneity in the population. In this paper, the expression 
for the Exponential mixture ROC curve is found and its 
properties are discussed. We also derived the expressions for 
accuracy, variance and confidence interval of AUC. The 
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-CÛA

2
α
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+CÛA

2
α

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
P

R

FPR

n=10

n=20

n=30

n=100

n=200

n=300



Sudesh Pundir, Azharuddin 

3rd International Conference on “Innovative Approach in Applied Physical, Mathematical/Statistical,  
Chemical Sciences and Emerging Energy Technology for Sustainable Development - ISBN: 978-93-83083-98-5 26 

parameters of Exponential mixture ROC model are derived by 
using the maximum likelihood method and method of 
moments. It was found that the maximum likelihood method 
gives better estimates in terms of less bias as compared to the 
estimates by method of moments. We also observed that the 
accuracy increased and variance of AUC decreased by 
increasing the sample size. Hence, when the population have 
heterogeneity and also follows exponential distribution then 
one should use Exponential mixture ROC model instead of 
Exponential ROC model. 
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PROGRAM 

In this paper, we did the simulation by using Mathematica 8 
software. The commands are as  follows: 

Dist=MixtureDistribution[{p,1-p},{ExponetialDistribution[1/
],ExponentialDistribution[1/ ]}] 

Data=RandomVariate[Dist,sample size] 

FindDistributionParameters[Data,MixtureDistribution[{p,1-
p},{ExponentialDistribution[1/ ], 

ExponentialDistribution[1/ ]}],ParameterEstimator-

>”MaximumLikelihood”] 
FindDistributionParameters[Data,MixtureDistribution[{p,1-
p},{ExponentialDistribution[1/ ], 

ExponentialDistribution[1/ ]}],ParameterEstimator-

>”MethodOfMoments”]    
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