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Abstract: Conventionally, the thermosiphon reboilers are being 

widely employed in petroleum, chemical and petrochemical 

industries as vaporizers, evaporators and reboilers. The 

hydrodynamics and heat transfer in a thermosiphon reboiler 

interact with each other making the process very complex. 

Prediction of the rates of heat transfer and thermally induced 

flow are the primary requirements for the design of 

thermosiphon reboilers. Some empirical models have been 

developed and published in literature by a number of workers 

for the prediction of the length of the boiling/non-boiling section 

of the heated tube. However, they suffer from critical infirmities. 

Thus, with the above observation in perspective and given the 

recent developments in the application of artificial intelligence 

techniques, the state-of-the-art technique called support vector 

machine (SVM) or specifically the SVM variant called Support 

Vector Regression (SVR) was employed for the first time to 

develop a model for predicting the length of the boiling/non-

boiling section of the heated tube in a thermosiphon reboiler, for 

different single component liquids with wide variation in thermo 

physical properties and operating parameters. The choice of this 

technique was prompted by its many attractive features. 

Moreover, the extensive survey of the literature revealed that 

very little work had been reported on the application of SVR to 

chemical engineering problems in general and to heat transfer in 

particular. No work was found on the application of SVR to 

model a closed loop vertical tube thermosiphon reboiler.The 

SVR-based model developed in this study, based on the superior 

Structural Risk Minimization principle, has been found to be far 

more superior than any of the published models based on the 

Empirical Risk Minimization principle. The study has opened 

new vistas to apply SVR to the problems of chemical engineering 

in general and heat transfer and boiling heat transfer in 

particular. 

1. INTRODUCTION 

A vertical tube thermosiphon reboiler represents effectively a 
pump-less system, in which natural, gravity-aided circulation 
takes place. Thermosiphon reboilers are being used in 
petroleum, chemical and petrochemical industries as 
vaporizers, evaporators and reboilers. Apart from this, the 
device is well adapted for heat transfer in situations prevailing 
in power plants, cooling systems for nuclear fuel rods in 
nuclear power reactors, refrigeration systems, pipe stills, and 
in the electronics industry. It also has relevant for efficiently 

transferring solar energy with little or no forced flow. The 
vertical tube thermosiphon reboiler has the advantages of 
excellent heat transfer rates, cheap manufacturing cost, easy 
cleaning, little maintenance, simplicity of construction, 
compactness and low operational costs. The frictional losses 
in the inlet and outlet piping and the cost of vapor line are 
minimized as the reboiler can be installed close to the column. 
The prediction of the rate of liquid circulation (thermally 
induced flow) and heat transfer is the primary requirement for 
the design and efficient operation of thermosiphon reboilers. 
Thermosiphon systems can be used in a wide range of 
operating temperatures and pressures. In almost all the 
applications, a subcooled liquid entering the tube gets heated 
by single phase convection and moves upwards. Depending 
upon the wall temperature conditions, subcooled boiling may 
get initiated at the surface. When the liquid attains saturation 
value, saturated boiling begins with the generation of net 
vapour, which increases resulting in various flow patterns 
ranging from bubbly to mist flow. The point at which the two 
phase begins is known as the incipient point of boiling (IPB) 
which corresponds to the condition of minimum degree of 
wall superheat required for the formation and detachment of 
the vapour bubble from the heated surface. Heat transfer 
coefficients at the onset of boiling are very high because of 
the nature of nucleate boiling and the increase in the velocity 
due to transition from single phase to a two-phase mixture. 
The IPB effectively divides the tube into two distinct regions; 
the non-boiling single phase and the two phase with entirely 
different modes of heat transfer. The prediction of the IPB is 
thus of paramount importance in the design of various process 
equipments operating on the thermosiphon reboiler principle. 
Engineering applications, in which the prediction of incipient 
boiling is necessary, are numerous. For instance, in some 
process applications dealing with thin film evaporation, 
nucleate boiling may not be a desirable phenomenon. 
However, in boiling water nuclear reactors, it is necessary to 
be able to predict the location of incipient boiling in the 
cooling channels, so that the downstream void distribution 
and the two phase pressure gradient can be determined. 
Various authors have proposed definitions of boiling 
incipience. 
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A number of studies have been conducted to understand the 
phenomenon of boiling incipience. Models have been 
proposed based on the semi-empirical approach for predicting 
the superheat for forced convection boiling in tubes. 
Important studies on boiling incipience include those by 
Murphy and Bergles [1], Yin and Messih [2], Hsu and 
Graham [3], Bergles and Rohsenow [4]. Yin and Abdel 
Messih [5] determined the liquid superheat during incipient 
boiling in a uniformly heated forced convection channel, and 
developed an analytical equation using Freon-11 as the test 
medium. Agarwal [6], Ali [7], Kamil [8] and Zaidi [9] gave 
empirical correlations to determine the length of heated tube 
required for the onset of fully developed boiling (ZOB) in a 
vertical tube thermosiphon reboiler. Experimentally measured 
values of ZOB were compared with those predicted by the 
above equations.  

Shamsuzzoha, et al. [10] have carried out a theoretical 
analysis to develop an analytical equation for the incipient 
point of boiling, including the effect of submergence. The 
minimum degree of wall superheat required for the onset of 
fully developed boiling of liquids was related to their physical 
properties through the theoretically derived equation. The 
model was tested using the experimental data available in 
literature. Shamsuzzoha and Alam [11] have carried out an 
analysis to predict the boiling incipience in a natural 
circulation flow reboiler tube taking into consideration the 
effect of turbulent eddies and submergence. An equation has 
been proposed to estimate the wall superheat for different 
types of liquids. 

Thus, with the above observations in mind and given the 
recent developments in the application of artificial 
intelligence techniques, it was decided to explore the 
possibility of using one such technique for developing a 
unified correlation for predicting circulation rate in a 
thermosiphon reboiler.  

Data driven modeling have been finding increasing relevance 
and acceptability in process industries. Of these, the classical 
methods such as least-squares methods, the maximum 
likelihood methods and traditional ANN are based on 
empirical risk minimization (ERM) principle whereas the 
support vector machine (SVM) method is based on the 
structural risk minimization (SRM) principle. This enables the 
SVM to achieve an optimum network structure by striking a 
right balance between the complexity of the approximation of 
the given data and the complexity of the approximating 
function. SVM is a supervised learning theory from the field 
of machine learning applicable to both nonlinear classification 
called support vector classification (SVC) and regression or 
SVR. The crux of the SVM design is solving a quadratic 
programming (QP) problem with linear constraints, which 
depends on the training vectors and the selection of few 
kernel parameters. The solution of a QP problem provides us 
the necessary information for choosing the most important 

vectors known as support vectors (SV) among all the data, 
and these support vectors will play an important role of 
defining the discriminant hyperplane or predicting function. 

The SVM method has been instrumental in heralding a new 
era in supervised learning paradigm. It has been successfully 
applied to many fields; some of which are pattern recognition, 
phase diagram assessment, molecular and materials design, 
trace element analysis, cancer diagnosis [12], image analysis, 
drug design, time series analysis, quality control of food, 
protein structure/ function and genomics [13]. SVM methods 
have been applied to regression problems with great success 
[14, 15]. The applicability of SVR-based models in the field 
of chemical engineering has been well demonstrated [16,17]. 
Very little work has been reported in literature on the 
application of SVR to heat transfer in general and boiling heat 
transfer in particular. Such studies include those by Gandhi et 
al. [18]and Zaidi [19]. Besides, to the best of the author’s 
knowledge, no published literature is there on the application 
of SVR for modeling of the important performance 
parameters of a thermosiphon reboiler, like the length of 
heated tube required for the onset of fully developed boiling 
(ZOB) in a vertical tube thermosiphon reboiler.  

In the present study, it is for the first time that SVR-based 
modeling has been used for predicting the length of heated 
tube required for the onset of fully developed boiling (ZOB) in 
a vertical tube thermosiphon reboiler.  

The experimental data from literature was first preprocessed. 
Regression diagnostic tools were used in order to detect 
outliers. Thereafter, the data was analyzed for the 
contributions of the influencing variables to the regression 
and the insignificant variable was dropped. Using this data, a 
unified SVR-based model was developed. Further, the 
estimation performance of this model was comprehensively 
compared and evaluated with the conventional models. In the 
present work, the experimental data of Ali [7], Kamil [8], 
Nihaluddin [20] and Zaidi [9] for the boiling of acetone, 
benzene, ethanol, ethyl acetate, ethylene glycol, propan-2-ol, 
toluene and distilled water was utilized for the development 
and validation of the SVR-based models. The regression 
models used from literature for comparison were those of Ali 
[7], Nihaluddin [20], Kamil [8], and Zaidi [9]. 

2. EXPERIMENTATION AND DATA REDUCTION 

2.1 Experimentation 

The experimental facility employed for the generation of a 
part of the data (including the author’s own work) that was 
used in the present study, was a single vertical tube thermo 
siphon reboiler as installed in the Heat Transfer Research 
Laboratory of the Department of Chemical Engineering, 
Aligarh Muslim University, Aligarh, India. Agarwal [6] 
however used a slightly earlier version of the same setup for 
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the generation of the remaining data. The description of the 
later setup, operating procedure and data reduction has been 
necessitated by the fact that to appreciate the models, it was 
necessary to know these aspects in some detail. The 
experimental facility consisted of a natural circulation reboiler 
loop with a condenser and cooling system, power supply 
system and required instrumentation as shown in the 
schematic diagram in Fig. 1. The main unit was a U shaped 
circulation loop made up of two long vertical tubes connected 
together with the bottom by a short horizontal stainless tube, 
while the upper ends were connected to a vapor liquid 
separator and the condenser. One of the vertical tubes was 
electrically heated and served as the test section. The liquid 
entered the tube at its bottom end, got heated and rose 
upwards with subsequent boiling. The vapor liquid mixture 
entered the separator from where the vapors went to the 
condenser for total condensation. The condensate and the 
liquid from the separator were directed towards the top of the 
other tube serving as down flow cold leg. The entire liquid 
from the cold leg ultimately entered the test section through a 
view port. The vapor liquid separator was a cylindrical vessel 
with a tangential entry of the two phase mixture in the middle. 
The vapors were condensed by means of two water-cooled 
condensers used in series. The primary condenser was a spiral 
coil fitted just below the top cover of the condenser vessel. 
The condensation took place at the outer surface of the coil 
and condensed liquid drained down the bottom of the 
condenser vessel through a vertical tube fitted with a liquid 
level indicator. 

A thermocouple was also inserted in this tube to measure the 
condensate temperature. The incondensables, if any, from the 
primary condenser entered the helical coil of the secondary 
condenser. The exit of the condenser was connected to a glass 
tube with its free end dipped into a bottle containing the test 
liquid so as to provide effective.  

Visual observation of the removal of traces of dissolved air 
from the test liquids during initial boil off. A centrifugal 
pump and storage tank arrangement connected to fresh water 
supply was used for circulating water in the condensers. To 
measure the total rise in temperature of the cooling water, 
thermocouple probes of copper-constantan were located at the 
inlet of the secondary condenser and the outlet of the primary 
condenser. In order to control the inlet liquid temperature to 
the test section, the liquid down flow pipe was jacketted from 
the lower end up to a height of 1000 mm, using a pipe of 80 
mm I.D. in which cooling water was passed as and when 
needed. The inlet and outlet temperatures of the water in the 
jacket were measured by means of thermocouple probes fitted 
therein. The temperature of the test liquid exiting from the 
down flow pipe and entering the horizontal pipe was 
measured by another thermocouple probe inserted at the 
bottom of the down flow pipe. The level of the test liquid in 
the down flow pipe (submergence) was indicated by a glass 

tube level indicator. This level acts as the driving force for the 
circulation of liquid through the loop. 

Prior to the start of experimentation the setup was 
hydraulically tested for leaks. It was flushed with distilled 
water for through cleaning and finally filled with it up to the 
top of the test section. The connections to the power supply 
thermocouple and various measuring instruments were made 
and checking their calibration ensures the satisfactory 
performance of these. 

Power was supplied to the test section and circulation system. 
Simultaneously, cooling water supply was activated thereby 
ensuring adequate amount of cooling water to the condensers. 
The system was kept running for several hours followed by 
aging in order to ensure stable tube wall nucleating 
characteristics. This step was essential for the reproducibility 
of data. Extreme care was taken that once the tube wall got 
stabilized; it must remain fully submerged with the liquid as 
the dry surface was very liable to entrap a thin film of air. 
This air on heating leaves the surface as tiny bubbles and 
joins the liquid, thereby setting up micro convection near the 
surface, resulting in additional extraneous turbulence causing 
error. During startup for conducting a series of runs, the test 
liquid was boiled off for about 6-8 hours to remove the last 
traces of dissolved air that was indicated by the cessation of 
air bubbles in the bubbler. After this, the desired heat flux was 
impressed upon the test section by proper adjustment and 
cooling water flow rate was maintained. Adding or draining 
the necessary amount of test liquid maintained the liquid level 
in the down flow pipe. When steady state conditions were 
established readings of thermocouples, various electrical 
instruments and rotameters were recorded. The liquid level in 
the down flow pipe was observed and noted from the glass 
tube level indicator. While keeping the submergence 
unchanged, readings were taken for different heat fluxes in 
increasing order. The horizontal pipe connecting the lower 
end of the down flow pipe/cold with that of the test section 
was heated by an electric heater made of 22 SWG nichrome 
wire wound over a length of 500 mm. It was energized by 
means of an autotransformer and the power supply was 
measured by a calibrated wattmeter. This arrangement was 
used in regulating and maintaining the temperature of the 
liquid and also in measuring the rate at which it entered the 
test section (Nihaluddin, 1993). 

The test section was a stainless steel tube of 25.56 mm I.D., 
28.85 mm O.D and 1900 mm long, tapped between two thick 
copper clamps designed to provide electrical contact to the 
tube with negligible contact resistance. The test section was 
electrically isolated from the rest of the setup by means of 
specially designed flanges fitted at the lower end and the 
upper glass tube section leading into the vapor liquid 
separator. This section gave a visual display of the boiling 
liquid emerging out of the test section. A view port at the 
junction of the horizontal tube and the test section enabled a 
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visual observation of the test liquid to ensure complete 
absence of any air or vapor bubbles at the entry to the test 
section. A thermocouple probe at this location was inserted to 
measure the temperature of the liquid entering the test section. 
In order to monitor the heat transfer surface temperatures 
along the tube length, twenty one copper constantan 
thermocouples were spot welded on the outer surface of the 
tube at intervals of 50 mm up to a length of 200 mm from the 
bottom end and of 100 mm over the remaining length.  

Data Reduction 

 

1. Test section; 2. Copper clamps; 3. View port for inlet 

liquid; 4. Glass tube section; 5. Vapor-liquid separator; 6. 

Primary condenser; 7. Spiral coil; 8. Secondary condenser; 

9. Liquid down-flow pipe; 10. Cooling jacket; 11. Wall 

thermocouple; 12. Liquid thermocouple probes; 13. Liquid 

level indicator; 14. Condenser down-flow pipe; 15. Bubbler; 

16. Feeding funnel; 17. Auxiliary heater; 18. Rotameters; 

19. Centrifugal pump; 20. Cold water tank. C1 to C4. Drain 

cock valves 

Figure 1. Schematic diagram of the experimental set up 

In some experiments, readings from only nineteen such 
thermocouples have been reported as the other three were 
probably not working. The energy to the test section was 
supplied through an automatic voltage stabilizer, 
autotransformer and low voltage high current transformer. 
The electrical energy input that got converted to heat in the 
wall of the test section was quantified by measuring the 
impressed voltage and current. 

The operating parameters taken for investigation with each 
single component liquid were heat flux and submergence. All 
the data was generated at atmosphere pressure as prevailing in 
Aligarh, India. The thermal equilibrium model as suggested 
by Saha and Zuber [21] , formed the basis of determination of 
circulation rates and liquid bulk temperature distribution 
along the heated tube length by making a heat balance on the 
test section. According to it, as the sub cooled liquid enters 
the test section of the reboiler loop and because of the uniform 
heat flux at the heating surface, the liquid bulk temperature 
starts to increase almost linearly and continues up to the 
saturation value if all the heat added to the system goes to 
raise the temperature of the liquid only.  

According to it, as the sub cooled liquid enters the test section 
of the reboiler loop and because of the uniform heat flux at 
the heating surface, the liquid bulk temperature starts to 
increase almost linearly and continues up to the saturation 
value if all the heat added to the system goes to raise the 
temperature of the liquid only. Thereafter, the liquid bulk 
temperature would remain constant at the saturation value and 
all the heat added would go as latent heat to generate vapor. 
For determining the circulation rate it was necessary to know 
the effective length of the non-boiling or sensible heating 
region over which the liquid temperature varied linearly. The 
lengths of the effective boiling and non-boiling zones over the 
entire heated tube were determined from the quantity of net 
vapor generation as obtained from the amount of vapor 
condensed in the condenser. A heat balance around the 
condenser gave:  

            (1)    

Thus,  

                   (2)  

                  (3)  

The rate of liquid circulation caused by buoyancy-induced 
flow was evaluated by making a heat balance over the non-
boiling section.  
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           (4)  

The liquid temperature distribution along the tube length in 
the non-boiling zone was calculated assuming a linear 
relationship as mentioned below.  

              (5) 

where, Z ≤ ZNB  

To obtain the correct inside wall temperature, the temperature 
drop between the thermocouple bead and the inside surface 
was estimated using the equation of conductive heat transfer 
with internal heat generation for a cylinder as:  

        
       (6) 

The local heat transfer coefficient at the thermocouple 
locations was calculated as: 

                (7)  

The length mean heat transfer coefficient for the entire tube 
length as well as for the boiling and non boiling sections was 
calculated as:  

                  (8)    

where, ∆Tavg with proper subscript represents the value for the 
relevant zone of interest.  

3. A BRIEF THEORY OF SVR-BASED MODELING 

The detailed theory of SVM can be referred to in several 
excellent works, for example Vapnik [22] and Smola and 
Schölkopf [23]. Therefore, in this study only an abridged 
mention is there of the fundamentals of support vector 
regression (SVR). Support vector machines (SVMs) are a set 
of non-parametric machine-learning techniques, whose 
algorithm aims at a constructive learning procedure based on 
the statistical learning theory [22]. The crux of the SVM 
design is solving a quadratic programming (QP) problem with 
linear constraints, which depends on the training vectors and 
the selection of few kernel parameters. The solution of a QP 
problem provides us the necessary information for choosing 

the most important vectors known as support vectors (SV) 
among all the data, and these support vectors play an 
important role of defining the discriminant hyperplane or 
predicting function. In SVM the basic aim is to map the 
original data into a feature space F with higher dimensionality 
via a non linear mapping function , which is usually 

unknown, and then carry out linear regression in the feature 
space. The SVR approximates a function by minimizing the 
regularized risk function given as: 

            (9) 

Where, 

        

       (10) 

and  is a prescribed parameter. 

In Eq. (9), the first term is called the empirical risk or error, 
which is measured by -insensitive loss function given by 
Eq. (10) and indicates that it does not penalize errors below 

. The parameter  is the tube size and it is equivalent to 
the approximation accuracy placed on the data points. It is a 
user defined value. The second term in Eq. (9), is used as a 
measurement of function flatness. C is a regularized constant 
determining the trade-off between the training error and the 
model flatness. C is also a user defined parameter. When 
introducing slack variables, the SVR formulation can be 
expressed mathematically in the form of a convex 
optimization problem as: 

Minimize  

Subject to  

   , 

   ,         (11) 

The above-mentioned convex optimization problem (Eq.(11)) 
can be solved by transforming it into its dual form by 
introducing Lagrange multipliers and exploiting optimality 
constraints. The final decision function takes the following 
form: 
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where, α and α* are the introduced Lagrange multipliers. Only 

the non-zero coefficients, , and the corresponding 

input vectors, xi, are called support vectors (SVs). These SVs 
are the most informative data points that compress the 
information content of the training set, thereby representing 
the entire SVR function. By introducing the radial basis 
function as the kernel function, all the necessary computations 
related to  can be performed implicitly in the input space 

instead of in the feature space. Thus the basic SVR decision 
function modeling the data takes the following form: 

   (13) 

where, is the kernel function. 

The bias parameter, b, is computed by applying Karush–
Kuhn–Tucker (KKT) conditions, which state that at the 
optimal solution the product between dual variables and 
constraints has to vanish.  

A fast and efficient algorithm known as Sequential minimal 
optimization (SMO) has been adopted. The advantage of 
SMO lies in the fact that solving for the two Lagrange 
multipliers can be done analytically [24].The computation 
was carried out on a computer with the following 
specifications: Lenovo Intel[R], Pentium [R] M processor 
1.73 GHz, 795 MHz with 1.24 GB RAM. In order to maintain 
a similarity in approach so as to facilitate comparison between 
the results from SVR model and those obtained by literature 
correlations the same randomly divided data sets were used 
for training (240 runs) and testing (60 runs). Out of the 
different kernels, the RBF kernel has been used in this study 
because of its good general performance and the few 
parameters to be adjusted. The best values of C, epsilon and 
the kernel parameter γ, were obtained by using the grid search 
methodology with standard k-fold cross-validation procedure 
on training data set that minimizes the average absolute 
relative error (AARE) and improves the correlation 
coefficient (R) values in the direction of unity.  

For the statistical analyses of SVR-based model and the 
models from literature, the following model evaluation 
parameters were used.  

The average absolute relative error (AARE) should be a 
minimum. It is given as: 

           (14) 

2. Correlation coefficient (R) should approach unity for a 
good fit. It is given as:  

      (15) 

The root mean square (RMSE) used to evaluate the model 
should be minimum. Its mathematical expression is given as: 

         (16) 

The standard measure of how widely values are dispersed 
from the average value (the mean) is evaluated by the 
standard deviation (σ). It should be a minimum. 

       (17) 

The internal predictive capability of the SVR-based model 
was evaluated by leave-one-out cross validation(Q2

LOO) on the 
training set, which was calculated by the following 
equation(Gramatica, 2007): 

         (18) 

The external predictive capability of the SVR-based model 
was evaluated by leave-one-out cross validation(Q2

ext) on the 
test set, which was calculated by the following equation: 

            (19) 

The mean relative error (MRE) for valuating the model should 
be as low as  possible. 

           (20) 
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4. RESULTS AND DISCUSSION  

Data preprocessing results 

The length of the heated tube (ZOB or ZNB) from the inlet, 
required for the boiling to be effective has been found to 
depend upon the wall heat flux (q), submergence (S), inlet 
liquid sub cooling (∆Tsub or tsub) and ratio of kinematic 
viscosities of the liquid and the vapor (νL/νV) [7,8,9]. The data 
from the sources listed earlier was preprocessed to detect 
outliers. The data thus obtained consisted of 300 experimental 
runs involving the boiling of acetone, benzene, ethanol, ethyl 
acetate, ethylene glycol, propan-2-ol, toluene and distilled 
water in a thermosiphon reboiler.  

All the correlations for predicting the length of the heated 
tube from the inlet, required for the boiling to be effective, 
have correlated the experimentally obtained values of ZOB or 
ZNB with the influencing variables in terms of dimensionless 
groups. Thus, ZOB or ZNB has been converted to ZOB/Lx100 
and q and ∆Tsub have been converted to PeB and Ksub 
respectively; S and νL/νV being already dimensionless. The 
ranges of these dimensionless groups as used in the present 
study for developing the SVR model are given in Table 1. 

In the present study, the RBF kernel was used. For getting a 
high generalization performance, it was necessary to optimize 
the model in order to have the right setting of C,  and .  

Table 1: Ranges of dimensionless groups  

used in the present study 

Group Peb Ksub S νL/νV ZOB/Lx100 

Range 39.3-
586.6 

1.3-
1155 

30-
100 

0.00018-
0.23 

22-82 

 

For achieving this, grid search methodology with 10-fold 
cross-validation, was used on the training data by first varying 
these parameters coarsely in the ranges: C: [23, 214 ], γ [2-12, 2-

1 ] and ε [2-9, 22 ] and then making a fine search. The optimal 
values of the model parameters for the SVR-based model are 
listed in Table 2. 

Table 2. Optimal parameters for SVR-based model for length of 

the non-boiling zone in a vertical tube thermosiphon reboiler. 

Model C γ= 

1/2σ
2
 

ε Kerne

l  

Loss 

function 

SV

s 

traini

-ng 

point

-s 

ZOB/Lx10
0 

10
0 

0.1 0.3
2 

RBF ε -
insensitiv

e 

122 240 

After optimization of the SVR parameters, the model output 
was used to construct the training course curve and the test 
data course curve as shown in Figure 2 and Figure 3, 
respectively. It can be seen that the SVR-based model is 
adequately trained and it predicts the unseen test data well. 

Table 3 compares the prediction of the SVR-based model in 
terms of statistical evaluation parameters using the training 
data set and the test data set. In terms of the model evaluation 
parameters, an AARE of 8.98 % and an R of 0.8333 on the 
training data and corresponding values of 10.08 % AARE and 
an R of 0.8302 on the test data were obtained. This may be 
considered as a fairly good prediction and generalization 
ability, considering the diversity of sources from which the 
data was obtained. It can be concluded that the model has a 
good accuracy and generalization ability. 

Plots between the actual values of ZOB/Lx100 and those 
predicted by the SVR model using the training data set and 
the test data set are shown in Figure 4. The model predicts the 
experimental data very well. The results demonstrate that the 
SVR-based model is a robust model. Table 4 illustrates the 
distribution of predicted data points of ZOB/Lx100 by SVR-
based model in terms of absolute deviation for training data. 

Table 3. Model evaluation parameters for SVR-based model 

using the training data and the test data. 

 
Table 4. Percentage distribution of predicted data points of ZNB 

by SVR-based model in terms of absolute deviation (AD) for 

training data. 

Absolute deviation 

(AD) (%) 

% of SVR model 

predicted values 

Cumulative 

score 

AD< 10 77.91 77.91 

10<AD<15 7.5 85.41 

15<AD<20 3 88.41 

20<AD<25 4.1 92.51 

AD>25 7.49 100 

Total 100  

ε γ

SVR Model evaluation 
parameter 

Train data Test data 

AARE (%) 8.98 10.08 

R 0.8333 0.8302 

RMSE 0.1381 0.1185 

SD 0.0918 0.0833 

Q2
LOO (Training data),  
Q2

ext(Test data) 
0.6923- -0.6778 

MRE 0.0908 0.0946 
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It is observed that the SVR-based model predicts nearly 88.41 
per cent data points within an absolute deviation of less than 
20 % and a total of 92.51 per cent data points within an 
absolute deviation of less than 25 %. Only 7.49 per cent data 
points have an AD of more than 25 per cent.  

Table 5 depicts the distribution of predicted data points of 
ZOB/Lx100 by SVR-based model in terms of absolute 
deviation for the test data set. It can be seen that the SVR-
based model predicts nearly 88.33 per cent data points within 
an absolute deviation of less than 20 % and a total of 93.33 
cent data points within an absolute deviation of less than 25 
%. Only 6.67 per cent data points have an AD of more than 
25 per cent. This shows that the SVR-based model has a good 
ability to predict the unseen test data set. 

Table 5. Percentage distribution of predicted data points of ZNB 

by SVR-based model in terms of absolute deviation (AD) for test 

data. 

Absolute deviation 

(AD) (%) 

% of SVR 

model predicted 

values 

Cumulative 

score 

AD< 10 58.33 58.33 

10<AD<15 16.67 75 

15<AD<20 13.33 88.33 

20<AD<25 5 93.33 

AD>25 6.67 100 

Total 100  

 

5. COMPARISON OF SVR-BASED MODEL WITH 

CORRELATIONS AVAILABLE IN LITERATURE 

A comparison of the unified SVR-based model for predicting 
the length of non-boiling section of the heated tube was made 
against three models from the literature using the test data set. 
Table 6 depicts the AARE values for each model. It is 
observed that the SVR-based data-driven model gives an 
unprecedented lowest AARE value of 10.08 per cent among 
all the models. The nearest AARE value is 57.19 % exhibited 
by Kamil [8]. It can therefore be concluded that the prediction 
performance of the SVR-based model is the best. 

Table 6. Performance of different models on test data set to 

predict the length of the non-boiling zone in a vertical tube 

thermosiphon reboiler. 

Author(s) AARE (%) 

Ali [7] 78.71 

Kamil [8] 57.19 

Zaidi [9] 77.71 

SVR-based model (present work) 10.08 

Further, Figure 5 illustrates the prediction performance of the 
unified SVR-based model vis-à-vis the other three models 
from literature. It is observed that the SVR-based model gives 
the most superior performance.  

Thus, based on the statistical evaluation parameters, the 
training and test course curves, the AD values and the 
comparison with other correlations in literature, the results 
show that the maiden SVR- based model based on the 
universal Statistical Learning Theory has very high prediction 
ability and is very accurate. 

6. CONCLUSIONS 

In the present study, a model has been developed to predict 
the length of the boiling/non-boiling section of the heated 
tube in a thermosiphon reboiler. The SVR-based model is 
superior to the other models considered in this study as it 
displays a high degree of accuracy and generalization ability. 
It shows that the prospects of the application of SVR in 
chemical engineering in general and heat transfer in particular 
are very bright. 

 
Figure 2. Training course curve for the length of   

the non-boiling zone. 

 

Figure 3. Test course curve for the length of  

the non-boiling zone. 
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Figure 4. SVR simulation of the length of the non-boiling zone in 

a vertical tube.  

 

Figure 5. Comparison of SVR simulation of the  length of the 

non-boiling zone with models in literature using test data. 
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