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Abstract: Einstein field equations with time dependent N and O 

have been considered in such a way which conserves the energy 

momentum tensor of matter. Coupling of different cosmological 

parameters is discussed in a general gravitational situation. It is 

found that the ansatz P ∝ R*, which leads to suitable 

cosmological models with variable N and O in Robertson-Walker 

geometry with � =  +Ç and in Bianchi type-I space-time, is 

incompatible in Bianchi type-V space-time. 
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1. INTRODUCTION 

In an evolving universe, the time variation of physically 
relevant parameters such as the energy density T, the volume 
expansion scalar � (hence the Hubble parameter ì(= �/3) 
and the deceleration parameter U = −1 − (ìV /ì�)) and the 
fluid shear scalar ­ are important. In view of the constancy of 
both, the relative dynamical importance of the energy density 
and the relative dynamical importance of the rate of fluid 
shear observed in many special exact cosmological solutions 
of Einstein’s field equations, Collins [1] established a theorem 
that holds in more general situation. The theorem states that 
“For any space-time in which the matter content consists of a 
perfect fluid whose equation of state is � = (Ú − 1)T 
(where T is the energy density, � is the isotropic pressure 
and Ú is a constant) and whose flow vector field forms an 
expanding geodesic and hypersurface-orthogonal congruence, 
then, if the cosmological constant is zero, T ∝ ��  ⇒ ­� ∝ �� and X∗ ∝ �� 

where � and ­ are respectively the volume expansion and the 
rate of shear of the fluid congruence, and X∗ is the Ricci 
scalar curvature of the hypersurfaces orthogonal to the flow. 
In these space-times, X∗ ≤ 0.” A result which however was 
not noticed by Collins is that, in these space-times the 
deceleration parameter U comes out to be a constant, but the 
converse holds only if ­� ∝ ��. Another result, which can be 
seen in this context, is that, when the isotropic pressure � is 
supplemented by the bulk viscous pressure −Y�, where Y is 

the bulk viscosity term satisfying Y = Y�T¡
� is the coefficient 

of bulk viscosity, then the above results also hold good. 

Einstein’s cosmological constant Λ and the Newton’s 
gravitational constant � which were earlier treated as true 
constants are no longer regarded as constants in cosmology 
now a days. The existence of Λ is favoured by the recent 
supernovae �g observations [2] and which is also consistent 
with the recent anisotropy measurements of the cosmic 
microwave background (CMB) made by the WMAP 
experiment [3]. However, there is a fundamental problem 
related with the existence of Λ, which has been extensively 
discussed in the literature. Its value expected from the 
quantum field theory- calculations is about 120 orders of 
magnitude higher than that estimated from the observations. 
A phenomenological solution to this problem is suggested by 
considering Λ as a function of time, so that it was large in the 
early universe and got reduced with the expansion of the 
universe [4], [5]. Variation of Newton's gravitational 
parameter � was originally suggested by Dirac on the basis of 
his large numbers hypothesis [6]. As � couples geometry to 
matter, it is reasonable to consider � =  �(<) in an evolving 
universe when one considers Λ = Λ(t). Many extensions of 
general relativity with � =  �(<) have been made ever since 
Dirac first considered the possibility of a variable G, though 
none of these theories has gained wide acceptance. However a 
new approach, which has been widely investigated in the past 
few years [7], [8], is appealing. It assumes the conservation of 
the energy-momentum tensor which consequently renders � 
and Λ as coupled field, similar to the case of � in original 
Brans-Dickie theory. This leaves Einstein’s field equations 
formally unchanged. In this context, an approach is worth 
mentioning in which the scaling of �(<) and Λ(<) arise from 
an underlying renormalization group flow near an infrared 
attractive fixed point [9]. The resulting cosmology explains 
the high redshift SNe Ia and radio sources observations 
successfully [10]. It also describes the plank era reliably and 
provides a resolution to the horizon and flatness problems of 
the standard cosmology without any unnatural fine tuning of 
the parameters [11]. Gravitational theories with variable � 
have also been discussed in the context of induced gravity 
model where � is generated by means of a non-vanishing 
vacuum expectation value of a scalar field [12]. Different 
phenomenological cosmological models have been proposed 
in the past few years, which describe the evolution of these 
constants (better to call them parameters). 
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It is believed that the early universe was characterized by a 
highly irregular expansion mechanism which isotropized later 
[13]. The level of anisotropy left out by the era of decoupling 
is only about 10B¸, as is revealed by the CMB observations. It 
could be that whatever mechanism diminished Λ to its present 
value, could have also rendered the early highly anisotropic 
universe to the present smoothed out picture. We believe that 
the variation of all these parameters T, �, ­, Λ and � should be 
linked together. Whatever physical processes are responsible 
for the evolution of one cosmological parameter should also 
be responsible for the evolution of others, implying that the 
different cosmological parameters are coupled together. 

We shall keep ourselves limited to Einstein’s field equations 
and to the parameters which appear explicitly therein. It 
would be worthwhile to mention that models with varying 
speed of light are recently being promoted. These are 
supported by claims, based on the measurements of distant 
quasar absorption spectra that the fine structure constant may 
have been smaller in the past. However, the speed of light i 
has a complex character having six different facets which 
come from many laws of physics that are a priori 
disconnected from the notion of light itself [14]. If it is the 
causal speed of which these theories are talking about, then 
one should not consider a varying i in general relativity 
unless the structure of the space-time metric is changed and 
reinterpreted. We consider i =  1 throughout our paper and 
discuss the coupling of the said parameters in a general 
gravitational situation. It is found that the variation of T as �� 
is incompatible in a Bianchi type-V space-time with 
variable � and Λ. 

2. FIELD EQUATIONS 

The universe is assumed to be filled with a distribution of 
matter represented by the energy-momentum tensor of a 
perfect fluid 


S� = (T + �)9S9� + �ûS� (in the units with i =  1),      (1) 

where T is the energy density of cosmic matter and � is its 
isotropic pressure. 9S  is the fluid flow vector field which form 
an expanding geodesic and hypersurface- orthogonal 
congruence. The Einstein field equations with variable 
gravitational and cosmological constants are 

XS� − 1
2 XMMûS�  

= −8k� ¯
S� − Z
»°[ ûS�±.    (2) 

With the above stated specializations of the fluid, the 
Raychaudhuri equation [15] reads as 

�V + 1
3 �� + 8k� �1

2 (T + 3�) − Λ
8k�� 

+2­� = 0,     (3) 

where �³= 9;SS ´ is the fluid’s volume expansion and ­� ¯=
C
� ­S�­S�± is the fluid shear. In view of the vanishing 

divergence of the Einstein tensor, equations (1) and (2) give 

TV + (T + �)� + T [V[ + ZV
»°[ = 0.   (4) 

where an overhead dot (∙) denotes differentiation along the 
fluid flow vector 9S . We now assume as is common in 
cosmology that, the law of conservation of energy momentum 

tensor of matter holds ³
;S
S� = 0´, giving 

 TV + (T + �)� = 0.    (5) 

By use of which, equation (4) yields 

8kT�V + ΛV = 0,     (6) 

which shows that the variation of T, � and Λ are coupled 
together. We also consider the Ú-law equation of state in the 
form 

� = (Ú − 1)T,     (7) 

where Ú is a constant such that 1 ≤ Ú ≤ 2. Using (7) in (3) 
and (5) and then eliminating � between these two, we obtain 

8k� = ¯ �
�øB�± ÌC

ø
]�]� − ¯�øòC

�ø� ± ]V �]^ + ¯ZB�®�] ±Í.  (8) 

Differentiating (8) and using in (6), we get 

]_] − �
� ¯¹øòC

ø ± ]� ]V]� + ¯�øòC
ø ± ]V ^]^ + �

� Ú�ΛV − γ(Λ − 2­�) aVa −γ(2­�)∙ = 0.     (9) 

This can be rewritten with the help of (5) and (7) as 

j
j< (�V + 1

3 ��) + Ú� (�V + 1
3 ��) 

− 3
2 ÚΛV + (Λ − 2­�)(−Ú�) 

+(2­�)∙ = 0.     (10) 

A representative length w representing the volume behavior of 
the cosmic fluid is defined as 
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=V= = C
� �.      (11) 

Using equation (11) in equation (10) and multiplying w�; 
equation (10) can be written as 

j
j< 2w� w �

w3 + (3Ú − 2
2 ) j

j< ³w V�´ 

− Ú
2

j
j< (Λw�) + 1

3
j
j< (2­�w�) 

+ ¯¹øB·
� ± ­�ww V = 0.    (12) 

Integrating equation (12) and dividing by w�; we get 

= �= + ¯�øB�
� ± =V�=� − ø

� Λ + C
� (2­�) + ¯¹øB·

� ± C=� Þ ­�w jw + �=� = 0,

  (13) 

where 4 is an arbitrary constant of integration. This gives  

Λ =
¯�

ø± = �= + ¯�øB�
� ± =V�=� + ¯��

ø ± C=� + ·
�ø (­�) + ¯·(�øB�)

�ø ± C=� Þ ­�w jw.
       (14) 

Equation (5) can be integrated with the help of (7) and (11) to 
give 

T = 2wB�ø,     (15) 

where 2 >  0 is an arbitrary constant of integration. In view 
of equations (5), (7), (11) and (14), equation (8) can be 
expressed as � = 1

8k2 ( 2
2 − 3Ú) 

éwB�ø ¯3 = �= − Λ + 2­�±Ô.    (16) 

Raychaudhuri equation (3) can be written in terms of w with 
the help of (11) as 

3 = �= = − »°[
� (T + 3�) + Λ − 2­�.   (17) 

Multiplying this equation by 2ww V and making use of equations 
(5), (6) and (11), we get on integration 

3 w V�
w� + 3�

w� = 8πGρ 

+Λ − ·=� Þ ­�w jw,     (18) 

where � is an arbitrary constant of integration, equation (18) 
is the generalized Friedmann equation in the presence of fluid 
shear and time dependent � and Λ, which provides the 
dynamics of the models. The constant � plays the role of 
curvature parameter in a homogeneous and isotropic FRW 
space-time (­ = 0). Equations (11), (14)-(16) describe the 
coupling of the parameters Λ, �, ­, T and �. It is easy to see 
that these coupled equations do not form a closed system. 
However, if supplemented with one more assumption in a 
given Riemannian space-time representing geometry of the 
universe, these equations are sufficient to specify the model 
completely. Several cosmological models with variable � 
and Λ have been obtained in the last three decades with or 
without the presence of bulk viscosity in homogeneous 
isotropic or anisotropic background by assuming one more 
condition in the form T = TX [16], T = iÉZÊ<gZ< [7]-
[8], (T + 3�)w� = iÉZÊ<gZ< [17], U = iÉZÊ<gZ< [18]-
[21], ì = 2(wB� + 1) [22]-[23], Λ = γwB� [8], Λ = 3βì� 

[24]-[28], Λ = β = �= + =V�=� + 3γwB� [29], � = 2<� [7], [30]. In the 

next section we consider the phenomenological ansatz 

T ∝ �� Ét T = 5��,    (19) 

where 5 is a constant of proportionality. 

3. VARIATION OF P AS R* 

Equation (19) with the help of equations (5) and (7) leads to 

2 ]�] − 3 ]V �]� = 0     (20) 

and T_T − 2
3 (6Ú + 1

Ú )T�TVT�  

+ ¯�øòC
ø ± ]V ^]^ = 0.     (21) 

The variation of the energy density T as given in equation (19) 
with (5) and (7) gives the time-variation of scale factor as 

w = ,< �^�, , is a positive constant.  (22) 

which implies 
�
ø

= �= + ¯�øB�
ø ± =V�=� = 0    (23) 

and consequently, equation (14) reduces to Λ = (24
Ú ) 1

w� + 4
3Ú (­�) 

+ ¯·(�øB�)
�ø ± C=� Þ ­�w jw.    (24) 
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The deceleration parameter U in this case comes out to be 

U = �ø
� − 1.     (25) 

It follows that when the cosmological constant Λ and the 
gravitational coupling constant � are taken to vary with time 
in space-times in which T varies as ��, the deceleration 
parameter U is always constant, but the converse may not be 
true. Moreover, the condition T ∝ �� always leads to a big 
bang origin of the universe. 

It may be noted that, though, the recent observations favour 
accelerating models at present but the possibility of 
decelerating models with small deceleration parameter are not 
completely ruled out. It has also been shown that the high 
redshift supernovae Ia can also be explained successfully in 
the decelerating models if one takes into account the 
absorption of light by the intergalactic metallic dust ejected 
from the supernovae explosions [5], [31]. 

Taking equation (20) as an additional assumption, 
Abdussattar and Vishwakarma [8] has obtained a FRW model 
with variable � and Λ and Vishwakarma [32] has discussed 
the simultaneous variation of Λ, � and ­� in Bianchi type-I 
space-time with variable � and Λ. In the next section we 
consider the coupling of these cosmological parameters in a 
Bianchi type-V space-time employing the ansatz (19). 

4. BIANCHI TYPE-V MODEL 

We consider a homogeneous and anisotropic Bianchi type-V 
space-time described by the line-element 

jÊ� = −j<� + ��(<)j�� + s���{��(<)jv�+e�(<)j��}.
        (26) 

For this metric the Einstein’s field equations �S�  =
−8k�
S�  yield 
��
� + ��

� + �V�V
�� − Z�

�� 

= −8k�(<)(Ú − 1)T + Λ(t),   (27) 

��
� + e�e + �V eV

�e − Z�
�� 

= −8k�(<)(Ú − 1)T + Λ(t),   (28) 

e�e + ��
� + eV�Ve� − Z�

�� 

= −8k�(<)(Ú − 1)T + Λ(t),   (29) 

�V�V
�� + �V eV

�e + eV�Ve� − 3 Z�
�� 

= 8k�(<)T + Λ(t),    (30) 

2 ÝV
Ý − fVf − gVg = 0.     (31) 

The volume expansion scalar � and shear ­ for the metric (26) 
are obtained as 

� = ÝV
Ý + fVf + gVg,     (32) 

­� = C
� éÝV �

Ý� + fV �f� + gV�g� − ¯ÝV fV
Ýf + fVgVfg + gVÝVgÝ±Ô.  (33) 

An average scale factor is obtained as w = (��e)¡^. On 
integration equation (31) yields 

�� = �e.     (34) 

Equations (27)-(29), with the help of equations (32) and (33) 
lead to 

ÝV
Ý = =V=,      (35) 

fVf = =V= − M¡=^ ,     (36) 

gVg = =V= + M¡=^ ,     (37) 

where �C is a constants of integration. Equations (35)-(37) can 
be integrated further to yield 

�(<) = ,C w(<) ,     (38) 

�(<) = ,� w(<) s�� é−�C Þ �Ñ=^Ô,   (39) 

e(<) = ,� w(<) s�� é�C Þ �Ñ=^Ô,   (40) 

where ,C, ,�, ,� are arbitrary constants of integration 
satisfying (,C. ,�. ,�) = 1. In view of (34) we get ,C = 1 
and ,� = ,�BC. Equation (33) for shear now reads as 

­� = M¡�=h .      (41) 

Equations (38)-(40) with the help of equation (22) give the 
values of the metric potentials as 

�(<) = ,C ,<�/�ø,    (42) 
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�(<) = ,� ,< �
�ø 

s�� �− M¡
L^ ¯ ø

øB�± <���� �,    (43) 

e(<) = ,� ,< �
�ø 

s�� �M¡
L^ ¯ ø

øB�± <���� �.    (44) 

So that, with suitable transformation, the metric (26) takes the 
form 

jÊ� = −j<� + ,�<·/�ø  
9::
:; ,C�jLC�

+,��s��i¡B�¯ j¡
 ^±¯ ����±Ñ

���� jL��

+,��s��i¡ò�¯ j¡
 ^±¯ ����±Ñ

���� jL��AB
BBC. 

       (45) 

For the model (45) the different cosmological parameters are 
obtained as 

� = �
ø

C
Ñ ,     (46) 

­ = M¡
L^ C

Ñ�/�,     (47) 

T = �
L^� C

Ñ�,     (48) 

Λ = (2 − Ú
Ú ) 2�C�

,¹3 1
<·

ø
 

+ ¯�B�ø
ø ± ¯ ��

L¡�L�± C
Ñk/^�,    (49) 

� = ¯L^�
°�ø± é C

¹ø − C
· ¯M¡�

Lh± C
Ñ(k/�)�� − C

· ¯ ��
L¡�L�± C

Ñ(k/^�)��Ô. (50) 

The anisotropy parameter 

 2̅ (= C
� ∑ ¯ãïBã

ã ±��SÐC ), where ìC = ÝV
Ý , ì� = fVf,  ì� = gVg are 

directional Hubble’s factors, is obtained as 

 2̅ = �ø�
� ¯M¡�

Lh± C
Ñ(k/�)��    (51) 

The anisotropy parameter 2̅ vanishes for large values of <. 
Therefore at late times, the model represents an isotropic 
universe. For the obtained model, the variation of Λ and � is 
depicted in the following figures. 

 

 

We see that the gravitational coupling constant � remains 
negative throughout the evolution, whereas the cosmological 
constant Λ which is initially positive, becomes negative 
during the course of evolution and ultimately approaches to 
zero for large values of <. Thus, we conclude that the Bianchi 
type-V space-time with variable � and Λ is incompatible with 
the ansatz T ∝ ��. 
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