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Abstract: In this article we present a parametric approach to 

standard mixture model with frailty in the presence of 

covariates. The problem of analyzing parameters of Gompertz 

mixture distribution with shared frailty is of interest and the 

focus of this paper. We propose frailty regression models in 

Gompertz mixture distributions and assume the distribution of 

frailty as gamma or inverse Gaussian or positive stable or power 

variance function distribution. There are some interesting 

situations like survival times in genetic epidemiology, dental 

implants of patients and twin births (both monozygotic and 

dizygotic) where genetic behavior (which is unknown and 

random) of patients follows a known frailty distribution. These 

are the situations which motivate to study this particular model. 

We give estimation procedures and develop test for frailty and 

the significance of regression parameters. A search of the 

literature suggests there is currently no work has been done for 

Gompertz mixture regression model with frailty. 
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1. INTRODUCTION 

Parametric survival models are regression models in which 
the distribution of the response is chosen to be consistent with 
what one would see if the response is time-to failure. In 
particular, the distribution of the response should have 
positive support. Examples of such distributions are the 
exponential, Weibull, log-normal, log-logistic, Gompertz, and 
the generalized gamma, among others. Here, we consider 
Gompertz distribution as baseline distribution. The Gompertz 
distribution is one of the most important growth models. It 
has many applications in, for example, medical, biological, 
and actuarial studies. This distribution was first introduced by 
Gompertz (1825).  

Survival models also differ from standard regression models 
in their ability to account for censoring and truncation. For 
purposes of interpretability, the distribution of time-to-failure 
is often times characterized by the hazard function, which is 
the ratio of the probability density function to one minus the 
cumulative density function. Hazard functions also provide a 
convenient means to adjust for regressors, either by assuming 
that the covariates serve to multiplicatively shift the hazard 
function (proportional hazards) or by assuming that the 

covariates serve to accelerate or decelerate the effect of time 
(accelerated failure time). 

A frailty model is a generalization of a survival regression 
model. In addition to the observed regressors, a frailty model 
also accounts for the presence of a latent multiplicative effect 
on the hazard function. This effect, or frailty, is not directly 
estimated from the data, but instead is assumed to have unit 
mean and finite variance, which is estimated. In cases where 
the frailty is greater than one, subjects experience an 
increased hazard (or risk) of failure and are said to be more 
frail than their cohorts. In this way, frailty models can provide 
a useful alternative to a standard survival model when the 
standard model fails to adequately account for all the 
variability in the observed failure times. 

The notion of frailty provides a convenient way to introduce 
random effects, association and unobserved heterogeneity into 
models for survival data. In its simplest form, a frailty model 
is a random effects model for survival data. 

A natural extension of the univariate frailty model would be a 
multivariate survival model where individuals are allowed to 
share the same frailty value. The shared frailty model is used 
with multivariate survival data where the unobserved frailty is 
shared among groups of individuals, and thus a shared frailty 
model may be thought of as a random effects model for 
survival data. In the following, we will restrict our 
considerations to the bivariate case. Sharing a frailty value 
also generates dependence between those individuals who 
share frailties, whereas conditional on the frailty those 
individuals are independent. 

Let a continuous random variable T be the lifetime of an 
individual and the random variable U be the frailty variable. 
The conditional hazard function for a given frailty variable U 

= u at time t > 0 is, 

 ℎ(<|�) = �ℎ�(<)sÝ��      (1.1) 

where h0(t) is a baseline hazard function at time t > 0. X is a 
column vector of covariates and β is a column vector of 
regression coefficients. The conditional survival function for 
given frailty at time t > 0 is, 
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 7(<|�) = sB Þ ß({|à)�{á
â = sBàãâ(Ñ)äå�æ     (1.2) 

where H0(t) is cumulative baseline hazard function at time t > 

0. Integrating over the range of frailty variable U having 
density f(u), we get marginal survival function as 

7(<)  = ç 7(<|�)>(�)j�
Ó

�
 

   = ç sBàãâ(Ñ)äå�æ
Ó

�
>(�)j� 

 = è ésBàãâ(Ñ)äå�æÔ 
= êë(ì�(<)sÝ��)      (1.3) 

where LU(.) is a Laplace transformation of the distribution of 
U.  

Once we have survival function at time t > 0 of lifetime 
random variable of an individual one can obtain probability 
structure and can base their inference on it. 

2. GENERAL SHARED FRAILTY MODEL 

The shared frailty model is relevant to event time of related 
individuals, similar organs and repeated measurements for 
example, if the timing of failure of paired organs like kidneys, 
lungs, eyes, ears, dental implants etc. are considered. In this 
model individuals from a group share common covariates. For 
monozygotic twins, examples are sex and any other 
genetically based covariates. Both monozygotic and dizygotic 
twins share date of birth and common pre birth environment. 
Also for human lifetime, natural disasters and accidents lead 
to the death of several persons at the same time or in the 
infectious diseases, two or more family members might visit 
an infected person and all of them become infected.  

The shared gamma frailty model was suggested by Clayton 
(1978) for the analysis of the correlation between clustered 
survival times in genetic epidemiology. An advantage is that 
without covariates its mathematical properties are convenient 
for estimation (see Oakes, 1982, 1986). However, when 
adjusting for environment risk factors the analysis of the 
clustering is more difficult (see Parner, 1998). Until recently, 
a lack of theory and reliable software had prevented 
widespread use of this model. In a frailty model, it is 
absolutely necessary to be able to include explanatory 
variables. The reason is that the frailty describes the influence 
of common unknown factors. If some common covariates are 
included in the model, the variation owing to unknown 
covariates should be reduced. 

Some covariates are indeed common for all members of the 
group. For monozygotic twins, examples are sex and any 
other genetically based covariate. Both monozygotic and 

dizygotic twins share date of birth and common pre-birth 
environment. By measuring some potentially important 
covariates, we can examine the influence of the covariates, 
and we can examine whether they explain the dependence, 
that is, whether the frailty has no effect (or more correctly, no 
variation), when the covariate is included in the model. The 
regression model is derived conditionally on the shared frailty 
(U). 

Suppose n individuals are observed for the study and let a 
bivariate random variable (Ti1, Ti2) be the first and second 
survival times of i

th individual (i = 1,2,3,…n). Also suppose 
that there are k observed covariates collected in a vector Xi = 
(Xi1,…..Xik)′ for i

th individual where Xia (a = 1,2,3,….. k) 
represents the value of a

th observed covariate for i
th 

individual. Here, we assume that the first and second survival 
times for each individual share the same value of the 
covariates. Let Ui be shared frailty for i

th individual. 
Assuming that the frailties are acting multiplicatively on the 
baseline hazard function and both the survival times of 
individuals are conditionally independent for given frailty, the 
conditional hazard function for i

th individual at j
th (i = 1,2) 

survival time tij > 0 for given frailty Ui = ui has the form, 

 ℎ³<S�î�S , �S´ = �Sℎ�³<S�´sÝï��      (2.1) 

where h0(tij) is baseline hazard at time tij > 0 and β is a 
column vector of order k of regression coefficients. 

The conditional cumulative hazard function for ith individual 
at jth survival time tij > 0 for given frailty Ui = ui is, 

  ì³<S�î�S, �S´ = �Sì�³<S�´ðS      (2.2) 

where ðS = sÝï�� and H0(tij) is cumulative baseline hazard 
function at time tij > 0. 

The conditional survival function for i
th individual at j

th 
survival time tij > 0 for given frailty Ui = ui is,  

7³<S�î�S, �S´ = sBã³Ñï�îàï,Ýï´ 

     = sBàïãâ³Ñï�´ñï      (2.3) 

Under the assumption of independence, bivariate conditional 
survival function for given frailty Ui = ui at time ti1 > 0 and ti2 

> 0 is, 

7(<SC, <S�|�S , �S) = 7(<SC|�S , �S)7(<S�|�S, �S) 

    = sBàï(ãâ¡(Ñï¡)òãâ�(Ñï�))ñï     (2.4) 

Unconditional bivariate survival function at time ti1 > 0 and ti2 

> 0 can be obtained by integrating over frailty variable Ui 
having the probability function f(ui), for ith individual. 
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7(<SC<S�|�S)  = Þëï7(<SC<S�|�S)>(�S)j�S  

    = ÞëïsBàï³ãâ¡(Ñï¡)òãâ�(Ñï�)´ñï>(�S) j�S 

    = êëïõ³ì�C(<SC) + ì��(<S�)´ðSö    (2.5) 

where êëï(. ) is Laplace transform of frailty variable of Ui for 
i
th individual. 

Thus, unconditional bivariate survival function for i
th 

individual at time ti1 > 0 and ti2 > 0 is, 

7(<SC<S�|�S)  = êëïõ³ì�C(<SC) + ì��(<S�)´ðSö  (2.6) 

Here onwards we represent 7(<SC<S�|�S) as 7(<SC<S�). 

Once we have unconditional survival function of bivariate 
random variable (Ti1, Ti2) we can obtain likelihood function 
and estimate the parameters of the model. 

3. FRAILTY REGRESSION MODEL IN MIXTURE 

DISTRIBUTION 

The mixture distribution in terms of survival function is  

  7(<) = |7C(<) + (1 − |)7�(<)    = |s��m−÷CÚCBC(sø¡Ñ −
1)` +    (1 − |)s��m−÷�Ú�BC(sø�Ñ − 1)`   (3.1) 

There are two ways of obtaining frailty models. The first one 
is 

  7ù(<|9) = |7C(<|9) + (1 − |)7�(<|9)          
=
|s��m−�÷CÚCBC(sø¡Ñ − 1)` +
   (1 − |)s��m−�÷�Ú�BC(sø�Ñ − 1)`   (3.2) 

This is called mixture of frailty models or mixture frailty. The 
second one is 
7ú(<|9) = s��õ�wÉûm|s��N−÷CÚCBC(sø¡Ñ − 1)O +
   (1 − |)exp N−÷�Ú�BC(sø�Ñ  − 1)O`ö   (3.3) 

This is called frailty of the mixture distributions in order to 
make the distinction between the two types. The same 
technique can be generalized to mixture of more than two 
distributions. When we integrate with respect to frailty (U), 
we get survival function of mixture distribution in terms of 
frailty parameter. The scale parameters λ1 and λ2 in the 
Gompertz mixtures can be expressed in terms of regression 
parameters in the following way: 

÷C = exp(5��) 
     ÷� = exp(5��)       (3.4) 

where 5 = (5�, 5C, 5�, … . . , 5ý)′ and X= (1,X1,…..Xp)′. If we 
want to make a distinction between the two scale parameters, 
one can express λ1 and λ2 as 

÷C = θCexp(5��) 
     ÷� = θ�exp(5��)       (3.5) 

After substituting λ1 and λ2 in (3.2) and (3.3), we get frailty 
regression models in Gompertz mixtures. 

4. GAMMA FRAILTY MODEL 

We consider frailty distribution as gamma distribution 
because the gamma distribution fits well to failure data from a 
computational and analytical point of view and it is easy to 
derive the closed form expression of survival and hazard 
function. Gamma distributions have been used for many years 
to generate mixtures in exponential and Poisson models. The 
gamma distribution (we use notation Gamma (α, κ) for the 
two parameter distribution with shape parameter α and scale 
parameter κ) is one of the most commonly used distributions 
to model variables that are necessarily positive. 

Let a continuous random variable U follows gamma 
distribution with shape parameter α and scale parameter κ 
then density function of U is, 

   >ë(�) = ��à��¡ ���(�B�à)��(�) ;                        (4.1) 

  where 	 > 0, 4 > 0, 
 > 0  
To make the model identifiable, although we consider two 
parameter gamma distribution, we restrict that expectation of 
the frailty equal to 1, variance be finite and scale parameter = 
shape parameter, so that only one parameter needs to be 
estimated. 

Thus the mathematical convenient choice for the distribution 
of the frailty U is the one parameter (α = κ = θ-1) gamma 
distribution i.e. 

 U ~ Gamma(θ-1, θ-1)       (4.2) 

with the corresponding density function 

>ë(�) = ���¡BCexp ( �−�/�) ��C�Γ(1/�)
 ;  � > 0, � > 0         (4.3) 

The Laplace transform of gamma distribution and 
unconditional survivor function are respectively as follows. 

  ê(Ê) = (1 + Ê�)BC/�         (4.4)  
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The unconditional bivariate survival function expressed as the 
Laplace transform of the frailty distribution, evaluated at the 
cumulative baseline hazard for i

th individual at time ti1 > 0 

and ti2 > 0 is, 

 7�(<C, <�) = [1 + �{ìC(<C) + ì�(<�)}]BC/�   (4.5)  

where Hi(ti) is cumulative baseline hazard functions of 
lifetime random variables Ti.   

4.1 Gamma Frailty in Gompertz Mixture  

Assuming the distribution of frailty variable, U as gamma and 
and integrating Eq. (3.2) over U, we get Gompertz mixture 
model with gamma mixture frailty, given by  

 7ù(<) = |[1 + �÷CÚCBC(sø¡Ñ − 1)]BC/� +  
    (1 − |)[1 + �÷�Ú�BC(sø�Ñ − 1)]BC/� 

        (4.6) 

The density function corresponding to SM(t) is 

>ù(<) = |÷Csø¡Ñ7ù¡
(Cò�) + (1 − |)÷�sø�Ñ7ù�

(Cò�)  
        (4.7) 

where 7ù¡(<) = [1 + �÷CÚCBC(sø¡Ñ − 1)]BC/�  

and 7ù�(<) = [1 + �÷�Ú�BC(sø�Ñ − 1)]BC/�   (4.8) 

Assuming the distribution of frailty variable, U as gamma and 
and integrating Eq. (3.3) over U, we get Gompertz mixture 
model with gamma frailty, given by  

7ú(<) = [1 − �log [|s��{−÷CÚCBC(sø¡Ñ − 1)} 

   +(1 − |)exp {−÷�Ú�BC(sø�Ñ − 1)}]] BC/�  
        (4.9) 

The pdf corresponding to above survival function SF(t) is 

>ú(<) = ��¡ä�¡á�¡ò(CB�)��ä��á����¡ò(CB�)�� 7ú
(Cò�)   (4.10) 

where 7C(<) = exp [−÷CÚCBC(sø¡Ñ − 1) ]   

  7�(<) = exp [−÷�Ú�BC(sø�Ñ − 1)]     (4.11) 

Here λ1 and λ2 are functions of regression parameters. 

5. INVERSE GAUSSIAN FRAILTY MODEL 

In shared frailty models gamma distribution is the most 
commonly used frailty distribution because of its 
mathematical convenience. However, it has drawbacks (see 

Kheiri et al. (2007)), for example, it may weaken the effect of 
covariates. As an alternative to the gamma distribution, the 
inverse Gaussian (inverse normal) distribution was introduced 
by Hougaard (1984) and has been used, for example, by 
Manton et al. (1986), Klein et al. (1992), Keiding et al. 
(1997), Price and Manatunga (2001), Kheiri et al. (2007) and 
Duchateau and Janssen (2008).         

Hougaard (1984) remarked that survival models with gamma 
and inverse Gaussian frailties behave very differently, noting 
that the relative frailty distribution among survivors is 
independent of age for the gamma, but becomes more 
homogeneous with time for the inverse Gaussian. The inverse 
Gaussian distribution has many similarities to standard 
Gaussian distribution. Furthermore, it provides much 
flexibility in modeling, when early occurrences of failures are 
dominant in a lifetime distribution and its failure rate is 
expected to be non-monotonic. In such situations the inverse 
Gaussian distribution might provide a suitable choice for the 
lifetime model. Also inverse Gaussian is almost an increasing 
failure rate distribution when it is slightly skewed and hence 
is also applicable to describe lifetime distribution which is not 
dominated by early failures. 

Similar to the gamma frailty model, simple closed-form 
expressions exist for the unconditional survival and hazard 
functions, this makes the model attractive. The inverse 
Gaussian distribution has unimodal density and is the member 
of exponential family. While its shape resembles the other 
skewed density functions, such as log-normal and gamma. 
These properties of inverse Gaussian distribution motivate us 
to use inverse Gaussian as frailty distribution. 

Let a continuous random variable U follows inverse Gaussian 
distribution with parameters µ and α then density function of 
U is, 

>(�) = �é 4
2kÔ

C� �B�
�sB�(àB�)�

�à��

0  ; É<ℎstqHÊs
� ; � > 0, p > 0, 4 > 0 

        (5.1) 

and Laplace transform is, 

 êë(Ê) = s�� ��
� − ¯��

�� + 24Ê±C/��    (5.2) 

with expectation and variance 

è(9) = p, Agt(9) = p�
4  

For identifiability, we assume U has expected value equal to 
one i.e. µ = 1. 
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Now the distribution of the frailty U is the one parameter (α = 
θ-1) inverse Gaussian distribution i.e. 
  9 ∼ ��(1, �BC)        (5.3) 

Under the restriction, density function and Laplace 
transformation of inverse Gaussian distribution result in the 
following simplified form, 

>(�) = �é C
�°�Ô

¡
� �B�/�sB(��¡)�

���
0  ; É<ℎstqHÊs 

� ; � > 0, � > 0   (5.4) 

and 

 êë(Ê) = s�� éCB(Cò���)¡/�� Ô                   (5.5) 

with variance of U is θ = 1/α. Note that there is heterogeneity 
if θ > 0. The unconditional bivariate survival function 
expressed as the Laplace transform of the frailty distribution, 
evaluated at the cumulative baseline hazard for ith individual 
at time ti1 > 0 and ti2 > 0 is, 

 7�(<C, <�) = s�� éCB(Cò��{ã¡(Ñ¡)òã�(Ñ�)})¡/�� Ô   (5.6) 

where Hi(ti) is cumulative baseline hazard functions of 
lifetime random variables Ti. 

5.1 Inverse Gaussian Frailty in Gompertz Mixture  

Assuming the distribution of frailty variable, U as inverse 
Gaussian and integrating Eq. (3.2) over U, we get Gompertz 
mixture model with inverse Gaussian mixture frailty, given by 

7ù(<) = |s�� ��BC �1 − ³1 + 2�÷CÚCBC(sø¡Ñ − 1)´¡
��� +

(1 −
|)s��õ�BC�1 − (1 + 2�÷�Ú�BC(sø�Ñ − 1))C/� ö         (5.7) 
Then pdf corresponding to above survival function SM(t) is  

>ù(<) = ��¡ä�¡á�!¡
õCò���¡ø¡�¡³ä�¡áB C´ö

¡�
+ (CB�)��ä��á�!�

õ(Cò����ø��¡(ä��áBC)ö¡/�   (5.8) 

where 

7ù¡(<)              = s�� "�BC �1 − ¯1 + 2�÷CÚCBC(sø¡Ñ − 1)±
C�#$   

and  

7ù�(<)              == s�� é�BC Ì1 − (1 + 2�÷�Ú�BC(sø�Ñ − 1))¡
�ÍÔ                       

               (5.9) 

Assuming the distribution of frailty variable, U as inverse 
Gaussian and integrating Eq. (3.3) over U, we get Gompertz 
mixture model with inverse Gaussian frailty, given by 

7ú(<) = s�� é�BCõ1 − {1 − 2�log [|s��{−÷CÚCBC(sø¡Ñ −
1)} + (1 − |) exp{−÷�Ú�BC(sø�Ñ − 1)}]}C/�]Ô   (5.10) 

The pdf corresponding to above survival function SF(t) is 

 >ú(<) = 7ú[1 − 2� log(|7C + (1 − |)7�)]BC/� ∗  

 |÷Csø¡Ñ7C + (1 − |)÷�sø�Ñ7�
|7C + (1 − |)7�

 

        (5.11) 

where 7C(<) = exp [−÷CÚCBC(sø¡Ñ − 1) ]   

  7�(<) = exp [−÷�Ú�BC(sø�Ñ − 1)]     (5.12) 

Here λ1 and λ2 are functions of regression parameters. 

6. POSITIVE STABLE FRAILTY MODEL  

In practice, the gamma frailty specification may not fit well 
(Shih, 1998; Glidden, 1999; Fan et al., 2000). The positive 
stable model (Hougaard, 1986) is a useful alternative, in part 
because it has the attractive feature that predictive hazard ratio 
decreases to 1 over time (Oakes, 1989). The property is 
observed in familial associations of the ages of onset of 
diseases with etiologic heterogeneity, where genetic cases 
occur early and long-term survivors are weakly correlated. 
The gamma model has predictive hazard ratios which are time 
invariant and may not be suitable for these patterns of failures 
(Fine et al., 2003). Although this replacement helps us to 
avoid problems induced by the identifiability of the univariate 
gamma-frailty model i.e. the univariate positive stable-frailty 
model with observed covariates is non-identifiable. 

The positive stable model has the advantage that it fits 
proportional hazards which means that if the conditional 
model has proportional hazards, so does the marginal 
distribution. This is an advantage, when considering the 
model as a random effects model. 

The pdf of positive stable distribution with two parameters α 
and δ is given by 

>(�) = −1
k� & Γ(Z4 + 1)

n!
Ó

�ÐC
(−�B� Ö

4)�
sin(4Zk);  

 � > 0, 0 < 4 < 1         (6.1) 

with Laplace transform 

êë(Ê) = è[sB�à] = s�� éBÕ��
� Ô      (6.2) 
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(see Hougaard, 2000, p. 503). 

 For α=δ, the pdf of positive stable distribution is given by 

>(�) = −1
k� & Γ(Z4 + 1)

n!
Ó

�ÐC
(−�)B�� sin(4Zk);  

        (6.3) 

Thus, 

>(�) = BC
° ∑ �(��òC)*!Ó�ÐC (−�)B(��òC) sin(4Zk);  

   � > 0, 0 < 4 < 1       (6.4) 

with Laplace transform 

êë(Ê) = è[sB�à] = s��[−Ê�]      (6.5) 

The unconditional bivariate survival function expressed as the 
Laplace transform of the frailty distribution, evaluated at the 
cumulative baseline hazard for i

th individual at time ti1 > 0 

and ti2 > 0 is, 

 7�(<C, <�) = s��[−{ìC(<C) + ì�(<�)}�]    (6.6) 

where Hi(ti) is cumulative baseline hazard functions of 
lifetime random variables Ti. 

6.1 Positive Stable Frailty in Gompertz Mixture  

Assuming the distribution of frailty variable, U as positive 
stable and integrating Eq. (3.2) over U, we get Gompertz 
mixture model with positive stable mixture frailty, given by 

 7ù(<) = |s��[−{÷CÚCBC(sø¡Ñ −  1)}�] +  

  (1 − |)s��[−{÷�Ú�BC(sø�Ñ −  1)}�]   (6.7) 

Then pdf corresponding to above survival function SM(t) is 

 >ù(<) = 4õ|÷C�ÚCCB�sø¡Ñ(sø¡Ñ − 1)�BC7ù¡ +   (1 −
|)÷��Ú�CB�sø�Ñ(sø�Ñ − 1)�BC7ù�ö    (6.8) 

where 7ù¡(<) = exp [−{÷CÚCBC(sø¡Ñ − 1)}� ]   

 and  7ù�(<) = exp [−{÷�Ú�BC(sø�Ñ − 1)}�]   (6.9) 

Assuming the distribution of frailty variable, U as positive 
stable and integrating Eq. (3.3) over U, we get Gompertz 
mixture model with positive stable frailty, given by 

 7ú(<) = s��[−[−wÉû{|s��〈−÷CÚCBC(sø¡Ñ − 1)〉 +
(1 − |)s��〈−÷�Ú�BC(sø�Ñ − 1)〉}]�]     (6.10) 

The pdf corresponding to above survival function is 

>ú(<) = �[B -./〈��¡ò(CB�)��〉]��¡õ��¡ä�¡á�¡ò(CB�)��ä��á��ö��¡ò(CB�)�� 7ú       

        (6.11) 

where  7C(<) = exp[−÷CÚCBC(sø¡Ñ − 1)]   
gZj  7�(<) = exp[−÷�Ú�BC(sø�Ñ − 1)]    (6.12) 

7. POWER VARIANCE FRAILTY MODEL  

This distribution is a three-parameter family uniting gamma 
and positive stable distributions. The distribution is denoted 
as PVF(α,δ,θ).  

For α = 0, the gamma distributions are obtained with same 
parametrization.  

For α = 1/2, the inverse Gaussian distributions are obtained.  

For α = −1, the non-central gamma distribution of shape 
parameter zero is obtained.  

For α = 1, a degenerate distribution is obtained.  

For α = 0, the positive stable distributions are obtained. 

The parameter set is (4 ≤ 1, Ö > 0), with (� ≥ 0 >Ét 4 > 0), 
and (� > 0 >Ét 4 ≤ 0). The distribution is concentrated on 
the positive numbers for 4 ≥ 0, and is positive or zero for 
4 < 0. In the case 4 > 0, the pdf of PVF is given by (see 
Hougaard, 2000, p. 504) 

>(�) =  s�� �−�� + Ö ��
4 � 1

k & Γ(Z + 1)
n!

Ó

�ÐC
 

   ¯− C
à±(��òC) sin(4Zk);  � > 0     (7.1) 

If α<0, the Γ-term in the density is not necessarily defined, 
and therefore we can use the alternative 

expression for pdf of PVF as (see Hougaard, 2000, p. 504) 

>(�) =  s�� Ì−�� + Ö ��
� Í C

à ∑ 2B(Õ��� )34
*!�(B��)

Ó�ÐC   (7.2) 

This expression is valid for all α values, except 0 and 1, with 
the convention that when the Γ-function in the denominator is 
undefined (which happens when nα is a positive integer), the 
whole term in the sum is zero. For 4 < 0, there is 
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probability s��(Ö ��
� ) of the random variable being zero. 

For 4 ≥ 0, the distribution is unimodal.  

If U1 and U2 are independent, and Ui follows PVF(α,δi,θ); i 

=1, 2 the distribution of U1 + U2 is PVF(α,δ1 ,δ2,θ). 

So, PVF distribution is infinitely divisible. When θ > 0, all 
(positive) moments exist, and the mean of Y is Ö��BCand its 
variance is Ö(1 − 4)��B�. 
The Laplace transform of PVF distribution is 

 êë(Ê) = s�� é− Õ{(�ò�)�B��}
� Ô         (7.3) 

The unconditional bivariate survival function expressed as the 
Laplace transform of the frailty distribution, evaluated at the 
cumulative baseline hazard for i

th individual at time ti1 > 0 

and ti2 > 0 is, 

7�,Õ,�(<C, <�) = s�� éÕ��
� Ô s�� é− Õ{(�òã¡(Ñ¡)òã�(Ñ�))�}

� Ô     
              (7.4) 

where Hi(ti) is cumulative baseline hazard functions of 
lifetime random variables Ti. 

7.1 Power Variance Frailty in Gompertz Mixture  

Assuming the distribution of frailty variable, U as PVF and 
integrating Eq. (3.2) over U, we get Gompertz mixture model 
with PVF mixture frailty, given by 

7ù(<) = p 5 |s�� �− Õ��ò�¡ø¡�¡³ä�¡áB C´ �
� � +

(1 − |)s�� �BÕ��ò��ø��¡³ä��áB C´ �
� �6   (7.5) 

where p = s�� ¯Ö ��
� ± 

Then pdf corresponding to above survival function SM(t) is 

>ù(<) =  põ|Ö{� + ÷CÚCBC(sø¡Ñ − 1)}�BC÷Csø¡Ñ7ù¡ + (1 −
|)Ö{� + ÷�Ú�BC(sø�Ñ −  1)}�BC÷�sø�Ñ7ù�ö    (7.6) 

where 7ù¡(<) =  s�� �− Õ��ò�¡ø¡�¡³ä�¡áB C´ �
� � 

and  7ù�(<) =  s�� �− Õ��ò��ø��¡³ä��áB C´ �
� �   (7.7) 

Assuming the distribution of frailty variable, U as PVF and 
integrating Eq. (3.3) over U, we get Gompertz mixture model 
with PVF frailty, given by 

7ú(<) = ps�� éBÕ
� {� − wÉû[|s��{−÷CÚCBC(sø¡Ñ −  1)} +

(1 − |)s��{−÷�Ú�BC(sø�Ñ −  1)}]}�Ô   (7.8) 

The pdf corresponding to above survival function is 

>ú(<) = Õ�[�B-./〈��¡ò(CB�)��〉]��¡õ��¡ä�¡á�¡ò(CB�)��ä��á��ö��¡ò(CB�)�� 7ú  

        (7.9) 

where  7C(<) = exp [−÷CÚCBC(sø¡Ñ − 1) ]   

gZj  7�(<) = exp [−÷�Ú�BC(sø�Ñ − 1)]    (7.10) 

8. ESTIMATION OF THE PARAMETERS  

Some of the lifetimes may be censored, because it is not 
possible to wait until failure of all individuals in the sample. 
We consider the censoring time (W) being of the right 
censoring type which is independent of lifetime (T). We first 
give estimation        procedure for the Gompertz mixture 
frailty model for different frailty distributions, where a similar 
estimation procedure holds for frailty model of mixtures. The 
likelihood based on a sample of size n is given by: 
ê = (∏ >ù(<S)7SÐC )(∏ 7ù(8S)�B7SÐC )        (8.1) 

where r is the number of failed individuals and (n-r) the 
number of censored individuals in the sample of size n. 

We can then maximize the marginal log-likelihood with 
respect to � = (ÚC, Ú�, ðC, ð�, �, 5, |)′ where 5 =
(5�, 5C, 5�, … . . , 5ý)′. The likelihood equations can be 
obtained by taking first order partial derivatives of the log-
likelihood and equating them with zero. The likelihood 
equations are not easy to solve. One may obtain maximum 
likelihood estimates (MLEs) by applying the Newton-
Raphson procedure. The second order partial derivatives of 
the log-likelihood can also be obtained. The observed 
information matrix, I is of order (p + 7) x (p + 7) with 
appropriate second order partial derivatives as follows: 

          I= 

9:
:::
:::
:::
:::
; <�=Ò�>

<ø¡�
<�=Ò�>
<ø¡<ø�

<�=Ò�>
<ø¡<ñ¡
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<ø¡<ø�
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<ø��

<�=Ò�>
<ø�<ñ¡

<�=Ò�>
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 (8.2)  

The inverse of the observed Fisher information matrix (8.2) is 
the observed variance-covariance matrix (Σ=I-1) of the MLE 
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�D = (ÚEC, ÚE�, ð̂C, ð̂�,�,G 5,G |H)′ of the parameter 

� = (ÚC, Ú�, ðC, ð�, �, 5, |)′ where 5 = (5�, 5C, 5�, … . . , 5ý)′. 
Thus, √Z(5D − 5) has an asymptotic multivariate normal 
distribution with mean vector zero and variance-covariance 
matrix ΣCC, where ΣCC is (p+1) x (p+1) variance-covariance 

matrix of 5 = ³5�, 5C, 5�, … . . , 5ý´�.  
9. LARGE SAMPLE TESTS  

We present test procedure based on large sample which is 
asymptotically normally distributed. 

9.1 Test for Regression Coefficients  

The hypotheses about β can be frequently put in the form ì� ∶  5CC = 5CC�  with β partitioned as 5 = (5CC, 5��)′ where 
β11 is of dimension k x 1, (k < p + 1) and 5CC�  consists of fixed 
and known values of the corresponding regression parameters 
of β11. To test H0 against the alternative that is ìC ∶  5CC ≠ 5CC�  
one can use 

ΛC = ³5DCC − 5CC� ´′ΣH��BC³5DCC − 5CC� ´     (9.1) 

where ΣH�� is k x k asymptotic observed variance-covariance 
matrix of 5DCC. Under H0, ΛC is asymptotically chi-square with 
k d.f. 

If ΛC > LM,CB�� , the corresponding regression coefficients are 
significant at the level of significance α, where LM,CB��  is the 
chi-square variate with k d.f. at level of significance α. 

When 5CC� = 0, it will lead to the test for regression 
coefficients equal to zero. 
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